间断点的概念
设函数
f
(
x
)
f(x)
f(x) 在点
x
0
x_0
x0 的某去心领域内有定义。如果函数
f
(
x
)
f(x)
f(x) 有下列三种情形之一:
(1)在
x
=
x
0
x=x_0
x=x0 没有定义;
(2)虽在
x
=
x
0
x=x_0
x=x0 有定义,但
lim
x
→
x
0
f
(
x
)
\lim\limits_{x\to x_0}f(x)
x→x0limf(x) 不存在;
(3)虽在
x
=
x
0
x=x_0
x=x0 有定义,且
lim
x
→
x
0
f
(
x
)
\lim\limits_{x\to x_0}f(x)
x→x0limf(x) 存在,但
lim
x
→
x
0
f
(
x
)
≠
f
(
x
0
)
\lim\limits_{x\to x_0}f(x)\not =f(x_0)
x→x0limf(x)=f(x0),
那么函数在点不连续,而点称为函数的不连续点或间断点。(《高等数学》·第七版·同济大学)
概念的符号化
令 D D D 表示函数 f ( x ) f(x) f(x) 的定义域,设 U ˚ ( x 0 , δ ) ⊂ D \mathring{U}(x_0,\delta)\sub D U˚(x0,δ)⊂D,如果 x 0 ∉ D ∨ ∄ lim x → x 0 f ( x ) ∨ lim x → x 0 f ( x ) ≠ f ( x 0 ) x_0 \notin D \ \lor \nexists \lim\limits_{x\to x_0} f(x) \ \lor \lim\limits_{x\to x_0} f(x) \not = f(x_0) x0∈/D ∨∄x→x0limf(x) ∨x→x0limf(x)=f(x0),那么称点 x 0 x_0 x0 为函数 f ( x ) f(x) f(x) 的间断点。
间断点的判断流程
伪代码描述
//判断点x0是否为函数f的间断点
bool isDiscontinuity( x0, f ){
if( x0 && Domain != true ) //Domain,表示定义域
return true; //在点x0处,函数f无定义,是间断点
else if( lim(x0, f) == null )
return true; //在点x0处,函数f的极限不存在,是间断点
else if( lim(x0, f) != f(x0) )
return true; //在点x0处,函数f的极限不等于f(x0),是间断点
else
return false; //不是间断点
}
流程图描述
自然语言描述
已知点
x
0
x_0
x0 和函数
f
(
x
)
f(x)
f(x),判断点
x
0
x_0
x0 是否为间断点:
① 首先,判断
f
(
x
)
f(x)
f(x) 在
x
0
x_0
x0 是否有定义(分母不能为零,负数不能开根,是否在分段函数定义域内……);如果无定义,那么
x
0
x_0
x0 为间断点。
② 相反,如果有定义,那么
lim
x
→
x
0
f
(
x
)
\lim\limits_{x\to x_0}f(x)
x→x0limf(x) 是否存在?——
lim
x
→
x
0
−
f
(
x
)
=
lim
x
→
x
0
+
f
(
x
)
\lim\limits_{x\to x_0^-}f(x) = \lim\limits_{x\to x_0^+}f(x)
x→x0−limf(x)=x→x0+limf(x) 吗?
lim
x
→
x
0
f
(
x
)
=
∞
\lim\limits_{x\to x_0}f(x)=\infty
x→x0limf(x)=∞ 吗?……如果不存在,那么
x
0
x_0
x0为间断点。
③ 如果存在,那么
lim
x
→
x
0
f
(
x
)
=
f
(
x
0
)
\lim\limits_{x\to x_0}f(x)=f(x_0)
x→x0limf(x)=f(x0) 吗?如果不等,那么
x
0
x_0
x0 为间断点。
④ 如果
f
(
x
)
f(x)
f(x) 在
x
0
x_0
x0 有定义,且
lim
x
→
x
0
f
(
x
)
\lim\limits_{x\to x_0}f(x)
x→x0limf(x) 存在,
lim
x
→
x
0
f
(
x
)
=
f
(
x
0
)
\lim\limits_{x\to x_0}f(x)=f(x_0)
x→x0limf(x)=f(x0),那么
f
(
x
)
f(x)
f(x) 在
x
0
x_0
x0 连续