间断点的判断流程

间断点的概念

设函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 的某去心领域内有定义。如果函数 f ( x ) f(x) f(x) 有下列三种情形之一:
(1)在 x = x 0 x=x_0 x=x0 没有定义;
(2)虽在 x = x 0 x=x_0 x=x0 有定义,但 lim ⁡ x → x 0 f ( x ) \lim\limits_{x\to x_0}f(x) xx0limf(x) 不存在;
(3)虽在 x = x 0 x=x_0 x=x0 有定义,且 lim ⁡ x → x 0 f ( x ) \lim\limits_{x\to x_0}f(x) xx0limf(x) 存在,但 lim ⁡ x → x 0 f ( x ) ≠ f ( x 0 ) \lim\limits_{x\to x_0}f(x)\not =f(x_0) xx0limf(x)=f(x0)
那么函数在点不连续,而点称为函数的不连续点或间断点。(《高等数学》·第七版·同济大学)

概念的符号化

D D D 表示函数 f ( x ) f(x) f(x) 的定义域,设 U ˚ ( x 0 , δ ) ⊂ D \mathring{U}(x_0,\delta)\sub D U˚(x0,δ)D,如果 x 0 ∉ D   ∨ ∄ lim ⁡ x → x 0 f ( x )   ∨ lim ⁡ x → x 0 f ( x ) ≠ f ( x 0 ) x_0 \notin D \ \lor \nexists \lim\limits_{x\to x_0} f(x) \ \lor \lim\limits_{x\to x_0} f(x) \not = f(x_0) x0/D xx0limf(x) xx0limf(x)=f(x0),那么称点 x 0 x_0 x0 为函数 f ( x ) f(x) f(x) 的间断点。

间断点的判断流程

伪代码描述

//判断点x0是否为函数f的间断点
bool isDiscontinuity( x0, f ){
	if( x0 && Domain != true ) //Domain,表示定义域
		return true; //在点x0处,函数f无定义,是间断点
	else if( lim(x0, f) == null )
		return true; //在点x0处,函数f的极限不存在,是间断点
	else if( lim(x0, f) != f(x0) )
		return true; //在点x0处,函数f的极限不等于f(x0),是间断点
	else
		return false; //不是间断点
}

流程图描述

Created with Raphaël 2.2.0 已知点x0,函数f(x) f(x)在x=x0有定义吗? x->x0, f(x)趋近A吗? x->x0, A等于f(x0)吗? 函数f(x)在点x0连续 点x0为间断点 yes no yes no yes no

自然语言描述

已知点 x 0 x_0 x0 和函数 f ( x ) f(x) f(x),判断点 x 0 x_0 x0 是否为间断点:
① 首先,判断 f ( x ) f(x) f(x) x 0 x_0 x0 是否有定义(分母不能为零,负数不能开根,是否在分段函数定义域内……);如果无定义,那么 x 0 x_0 x0 为间断点。
② 相反,如果有定义,那么 lim ⁡ x → x 0 f ( x ) \lim\limits_{x\to x_0}f(x) xx0limf(x) 是否存在?—— lim ⁡ x → x 0 − f ( x ) = lim ⁡ x → x 0 + f ( x ) \lim\limits_{x\to x_0^-}f(x) = \lim\limits_{x\to x_0^+}f(x) xx0limf(x)=xx0+limf(x) 吗? lim ⁡ x → x 0 f ( x ) = ∞ \lim\limits_{x\to x_0}f(x)=\infty xx0limf(x)= 吗?……如果不存在,那么 x 0 x_0 x0为间断点。
③ 如果存在,那么 lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim\limits_{x\to x_0}f(x)=f(x_0) xx0limf(x)=f(x0) 吗?如果不等,那么 x 0 x_0 x0 为间断点。
④ 如果 f ( x ) f(x) f(x) x 0 x_0 x0 有定义,且 lim ⁡ x → x 0 f ( x ) \lim\limits_{x\to x_0}f(x) xx0limf(x) 存在, lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim\limits_{x\to x_0}f(x)=f(x_0) xx0limf(x)=f(x0),那么 f ( x ) f(x) f(x) x 0 x_0 x0 连续

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值