详讲torch.nn.utils.clip_grad_norm_

Pytorch梯度截断:torch.nn.utils.clip_grad_norm_

梯度裁剪:

既然在BP过程中会产生梯度消失(即偏导无限接近0,导致长时记忆无法更新),那么最简单粗暴的方法,设定阈值,当梯度小于阈值时,更新的梯度为阈值(梯度裁剪解决的是梯度消失或爆炸的问题,即设定阈值),如下图所示:

在这里插入图片描述

img

torch.nn.utils.clip_grad_norm_(parameters, max_norm, norm_type=2)

函数定义:裁剪可迭代参数的渐变范数,范数是在所有梯度一起计算的,就好想他们被连接成单个矢量一样,渐变是就地修改的。

原理:对网络所有参数求范数,和最大梯度阈值相比,如果clip_coef < 1,范数大于阈值,则所有梯度值乘以系数。

参数列表:

  • parameters(Iterable[Tensor]或Tensor)——一个由张量或单个张量组成的可迭代对象(模型参数),将梯度归一化、
  • max_norm:(float or int)——梯度的最大范数
  • norm_type:(float or int)——所使用的范数类型

使用:

optimizer.zero_grad()        
loss, hidden = model(data, hidden, targets)
loss.backward()
 
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
optimizer.step()

但是,clip_grad_norm还不够狠,有时候失效,这个时候更狠的就出来了:

torch.nn.utils.clip_grad_value_(model.parameters(), number)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值