ENVI影像处理(8):图像融合

本文介绍了遥感图像处理中的图像融合技术,通过结合低分辨率多光谱影像与高分辨率单波段影像,生成高分辨率多光谱影像。讨论了ENVI软件中的四种融合方法:HSV变换、Brovey变换、PCA变换及Gram-schmidtPanSharpening,并对比了它们的特点与适用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图像融合是将低分辨率的多光谱影像与高分辨率的单波段影像重采样生成一副高分辨率多光谱影像遥感的图像处理技术,使得处理后的影像既有较高的空间分辨率,又具有多光谱特征。图像融合除了要求融合图像精确配准外,融合方法的选择也非常重要,同样的融合方法用在不同影像中,得到的结果往往会不一样。

ENVI中的几种融合方法的及其适用范围包括:

  • HSV变换:首先对RGB 图像变换HSV 颜色空间,用高分辨率的图像代替颜色亮度值波段,自动用最近邻或双线性或三次卷积技术将色度和饱和度重采样到高分辨率像元尺寸,然后再将图像变换回RGB 颜色空间。纹理改善,空间保持较好,光谱信息损失较大,受波段限制。
  • Brovey变换(比值变换):对RGB 图像和高分辨率数据进行数学合成,从而使图像融合,即RGB 图像中的每一个波段都乘以高分辨率数据与RGB 图像波段总和的比值。然后自动地用最近邻、双线性或三次卷积技术将3个RGB 波段重采样到高分辨率像元尺寸。光谱信息保持较好,受波段限制
  • PCA变换:先对多光谱数据进行主成分变换,然后用高分辨率波段替换第一主成分波段,最后进行主成分反变换得到融合图像。无波段限制,光谱保持好。第一主成分信息高度集中,色调发生较大变化。
  • Gram-schmidt Pan Sharpening(GS):从低分辨率的波段中复制出一个全色波段,对复制出的全色波段和多波段进行Gram-Schmidt 变换,其中全色波段被作为第一个波段。用高空间分辨率的全色波段替换Gram-Schmidt 变换后的第一个波段。最后,应用Gram-Schmidt 反变换得到融合图像。改进了PCA中信息过分集中的问题,不受波段限制,较好的保持空间纹理信息,尤其能高保真保持光谱特征。

操作步骤

两幅影像数据:单波段高分辨率,多波段低分辨率
在这里插入图片描述
在这里插入图片描述
选择融合方法(此处以Gram-schmidt Pan Sharpening为例):
在这里插入图片描述
查看融合之后影像的数据的分辨率
在这里插入图片描述
完成

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

妖怪喜欢风

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值