流形学习LLE LE Isomap总结

LLE

1、根据欧式距离得到最近邻的K个点

2、根据min \left \| xi -\sum_{j=1}^{k}wij*xj\right \|_{2}^{2}公式,由拉格朗日乘子得出,wi = \frac{zi^{-1}1_{k}}{1_{k}^{T}zi^{-1}1_{k}},其中zi = (xi-xj)(xi-xj)^{T}

3、根据高维空间得到的权重关系wi,在低维空间保留此权重关系,因此根据公式min \left \| yi -\sum_{j=1}^{k}wij*yj\right \|_{2}^{2},由拉格朗日乘子可计算得出(I-W)(I-W)^{T}的2~d+1个最小的特征值所对应的特征向量组成了Y

具体的推导证明过程可参考:局部线性嵌入(LLE)原理总结 - 刘建平Pinard - 博客园 (cnblogs.com)

LE

1、根据欧氏距离得到最近邻的K个点

2、根据公式wij = e^{\frac{\left \| xi-xj \right \|_{2}^{2}}{2\sigma ^{2}}}得到关系矩阵W,为了保证W是对称矩阵,令W = \frac{1}{2}(W+W^{T})

3、根据公式min \sum_{i,j}wij\left \| yi-yj \right \|_{2}^{2}di = \sum_{j=1}^{k}wij , i=1...n,D = diag(d1,..,dn),计算得出D-W的2~d+1个最小的特征值所对应的特征向量组成了Y

Isomap

1、通过欧氏距离计算k个近邻的点到该点的距离,不是前k个近邻的点到该点的距离记为无穷大,由此得到邻近关系矩阵

2、通过floyd的方法,得到所有点对之间的最短路径,由此得到的两点之间的测地距离关系矩阵记为D

3、调用MDS的方法得到降维后的坐标Z

MDS

1、根据公式dij^{2} = \left \| zi-zj \right \|^{2},可求出内积矩阵B= Z^{^{T}}Z = -\frac{1}{2}(\frac{1}{N^{2}} \sum_{i=1}^{N}\sum_{j=1}^{N}dij^{2}-\frac{1}{N}\sum_{i=1}^{N}dij^{2}-\frac{1}{N}\sum_{j=1}^{N}dij^{2}+dij^{2}),对B进行特征分解,可得到特征值\sigma和特征向量p,由此可得到Z= \sigma ^{\frac{1}{2}}p

2、也可以引入H=I-\frac{1}{n}ee^{T},e=(1,..,1)^{T},c=(\left \| z1 \right \|_{2}^{2},...,\left \| zn \right \|_{2}^{2})^{T},计算得出B = H^{T}BH,因此根据公式dij^{2} = \left \| zi-zj \right \|^{2} = \left \| zi \right \|^{2}+\left \| zj \right \|^{2}-2zizj可以得出,D= ce^{T}+c^{T}e-2B, 可计算得出B = -\frac{1}{2}H^{T}DH,对B进行特征分解,可得到特征值\sigma和特征向量p,由此可得到Z= \sigma ^{\frac{1}{2}}p

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值