LLE
1、根据欧式距离得到最近邻的K个点
2、根据公式,由拉格朗日乘子得出,
,其中
3、根据高维空间得到的权重关系,在低维空间保留此权重关系,因此根据公式
,由拉格朗日乘子可计算得出
的2~d+1个最小的特征值所对应的特征向量组成了Y
具体的推导证明过程可参考:局部线性嵌入(LLE)原理总结 - 刘建平Pinard - 博客园 (cnblogs.com)
LE
1、根据欧氏距离得到最近邻的K个点
2、根据公式得到关系矩阵W,为了保证W是对称矩阵,令
3、根据公式,
,
,计算得出D-W的2~d+1个最小的特征值所对应的特征向量组成了Y
Isomap
1、通过欧氏距离计算k个近邻的点到该点的距离,不是前k个近邻的点到该点的距离记为无穷大,由此得到邻近关系矩阵
2、通过floyd的方法,得到所有点对之间的最短路径,由此得到的两点之间的测地距离关系矩阵记为D
3、调用MDS的方法得到降维后的坐标Z
MDS
1、根据公式,可求出内积矩阵
,对B进行特征分解,可得到特征值
和特征向量p,由此可得到
2、也可以引入,计算得出
,因此根据公式
可以得出,
, 可计算得出
,对B进行特征分解,可得到特征值
和特征向量p,由此可得到