1982-2021年全球0.05度植被NDVI和NIRv数据(附R代码)

图片

图片

引用:Jeong, S., Ryu, Y., Gentine, P., Lian, X., Fang, J., Li, X., Dechant, B., Kong, J., Choi, W., Jiang, C., Keenan, T. F., Harrison, S. P., & Prentice, I. C. (2024). Persistent global greening over the last four decades using novel long-term vegetation index data with enhanced temporal consistency. Remote Sensing of Environment, 311, 114282. [HTML] (2024.09)

1. 数据说明

该数据集时空分辨率为0.05度/月,格式为.nc文件,缩放因子为0.01(官网介绍,但实际的nc没有缩放因子),缺失值为-9999,时间范围覆盖1982年1月至2021年12月,全球栅格尺寸为3600×7200,与MODIS CMG网格一致。基于AVHRR和MODIS卫星观测生成的全球长期NDVI和NIRv数据,通过跨传感器校准、轨道漂移校正和基于机器学习的跨传感器一致性处理,解决了时间一致性问题。改进数

### 使用 Google Earth Engine (GEE) 执行全球 NDVI 计算 为了在全球范围内计算归一化植被指数(NDVI),可以利用 GEE 的强大功能处理大规模遥感数据集。通过 Python API 接口访问这些资源,能够高效完成任务。 #### 准备工作环境 安装必要的库文件以便于后续操作: ```bash pip install earthengine-api folium geemap ``` 初始化地球引擎客户端连接: ```python import ee ee.Initialize() ``` 加载影像集合并筛选所需时间范围内的 Landsat 数据作为输入源[^1]: ```python dataset = ee.ImageCollection('LANDSAT/LC08/C01/T1_SR') \ .filterDate('2023-01-01', '2023-12-31') ``` 定义函数用于计算单张图片上的 NDVI 值[^4]: ```python def add_ndvi(image): ndvi = image.normalizedDifference(['B5', 'B4']).rename('NDVI') return image.addBands(ndvi) ``` 应用此方法到整个图像序列中去获取带有NDVI 波段的新版本[^2]: ```python ndvi_collection = dataset.map(add_ndvi) ``` 最后一步是从得到的结果集中选取特定日期或者平均后的最终产物来进行可视化呈现或是进一步分析[^3]: ```python mean_ndvi = ndvi_collection.mean().select('NDVI') # 可视化参数设置 vis_params = { 'min': -1, 'max': 1, 'palette': ['blue', 'white', 'green'] } map_id_dict = mean_ndvi.getMapId(vis_params) print(f"Map ID: {map_id_dict['tile_fetcher'].url_format}") ``` 以上代码片段展示了如何基于 GEE Python 实现全球下的 NDVI 计算流程。值得注意的是,在实际项目里可能还需要考虑云层遮挡等因素的影响,从而采取相应的预处理措施以提高结果准确性。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GIS遥感数据处理应用

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值