基于ARMA模型的时间序列(客流等等)预测

  本文主要分享自己的学习成果,内容并不完善,还有待提高,具体代码咨询vx:15660876350,成果可用于参考打比赛和写论文最后本文采用的是jupyter notebook 6.4.5版本和该服务运行中使用的 Python 版本为:Python 3.9.7 (default, Sep 16 2021, 16:59:28) [MSC v.1916 64 bit (AMD64)]。内容包括数据预处理和模型预测两部分,可以帮忙仿真实现,内容真实可靠。

数据分析:将数据转化成一些图以便于理解,例如表格图、折线图、柱状图和更具体的折线图

数据处理(数据降维):本文选取的数据处理是基本的数据处理。比如删除一些字段如图所示:

缺失值的检测与补全并热力图可视化:

异常值的检测与处理:3\sigma检测、箱型图检测和基于距离的局部离群因子方法来检测异常值

 ARMA模型的构建如下图的步骤:

 ADF平稳性检测:

 白噪声检验:

数据折线图:

模型定阶:可以通过ACF和PACF图得出,也可以通过BIC和AIC直接得出:

 残差白噪声检验:符合正态分布

 预测平稳化后的序列:

 实际效果:

 预测评价指标:可以看出拟合效果还不错。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值