module

文章介绍了如何在PyTorch中使用nn.Module模块构建神经网络,包括继承机制、初始化父类属性、forward函数的自动调用以及如何像函数一样使用自定义类。
摘要由CSDN通过智能技术生成
  1. nn.Module模块使用
    ① nn.Module是对所有神经网络提供一个基本的类。

② 我们的神经网络是继承nn.Module这个类,即nn.Module为父类,nn.Module为所有神经网络提供一个模板,对其中一些我们不满意的部分进行修改。

import torch
from torch import nn

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()  # 继承父类的初始化
        
    def forward(self, input):          # 将forward函数进行重写
        output = input + 1
        return output
    
tudui = Tudui()
x = torch.tensor(1.0)  # 创建一个值为 1.0 的tensor
output = tudui(x)
print(output)
  1. super(Myclass, self).init()
    ① 简单理解就是子类把父类的__init__()放到自己的__init__()当中,这样子类就有了父类的__init__()的那些东西。

② Myclass类继承nn.Module,super(Myclass, self).init()就是对继承自父类nn.Module的属性进行初始化。而且是用nn.Module的初始化方法来初始化继承的属性。

③ super().init()()来通过初始化父类属性以初始化自身继承了父类的那部分属性;这样一来,作为nn.Module的子类就无需再初始化那一部分属性了,只需初始化新加的元素。

③ 子类继承了父类的所有属性和方法,父类属性自然会用父类方法来进行初始化。

  1. forward函数
    ① 使用pytorch的时候,不需要手动调用forward函数,只要在实例化一个对象中传入对应的参数就可以自动调用 forward 函数。

② 因为 PyTorch 中的大部分方法都继承自 torch.nn.Module,而 torch.nn.Module 的__call__(self)函数中会返回 forward()函数 的结果,因此PyTroch中的 forward()函数等于是被嵌套在了call(self)函数中;因此forward()函数可以直接通过类名被调用,而不用实例化对象。

class A():
    def __call__(self, param):
        print('i can called like a function')
        print('传入参数的类型是:{}   值为: {}'.format(type(param), param))
        res = self.forward(param)
        return res
    
    def forward(self, input_):
        print('forward 函数被调用了')
        print('in  forward, 传入参数类型是:{}  值为: {}'.format( type(input_), input_))
        return input_

a = A()
input_param = a('i')
print("对象a传入的参数是:", input_param)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值