LSTM网络系列总结

LSTM 网络结构系列总结

简介:在之前的博客中讨论了 4 期不同的 LSTM 网络结构,并给出了相关的代码和网络运行结果,本期将总结这些网络的结构和特性

网络结构分析

上述 4 期的 LSTM 网络结构(详见博主的个人主页)分别总结如下

其中,第一期、第二期的 都是 LSTM 的基础实践部分,网络结构分别为

LSTM网络之时间序列处理总结 - 一
序列输入层
LSTM 网络层
全链接层
LSTM网络之时间序列处理总结 - 二
序列输入层
双层 LSTM 网络层
全连接层

相较于普通的 LSTM 网络,双层 LSTM 网络的混淆矩阵结果就不太稳定了,从其 训练曲线 和混淆矩阵 结果可见一斑

project cover 训练过程可视化结果
project cover 可视化混淆矩阵测试结果

P.S. 这种还算过得去的测试结果还是调整参数后搞出来的,不经过调试的结果实再太差

在我使用双层 LSTM 的时候,发现这种网络由于自身不稳定的特性,不太适合于进行时间序列预测,但是我又想进行结合,因此就想到了结合神经网络和双层 LSTM、结合注意力机制和双层 LSTM 就有了第三期的神经网络结合 LSTM 的实践,网络结构如下

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

空 白II

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值