前言
CRNN模型,即卷积递归神经网络(Convolutional Recurrent Neural Network),是一种结合了卷积神经网络(CNN)和递归神经网络(RNN)优势的深度学习模型。CRNN模型专为处理图像中的序列识别任务而设计,尤其擅长于场景文本识别。以下是CRNN模型的几个关键特点:
-
端到端训练:CRNN能够直接从输入图像到输出序列标签进行端到端的训练,无需复杂的预处理或多步骤处理。
-
任意长度序列处理:CRNN可以处理任意长度的序列,不依赖于字符分割或水平尺度归一化,这使得它适用于多变的图像文本识别。
-
结合CNN和RNN:CRNN模型利用CNN进行特征提取,捕捉图像的局部特征,然后通过RNN处理这些特征以预测序列标签,有效捕捉序列数据中的上下文信息。
-
紧凑的模型结构:CRNN模型由于权重共享和省略全连接层,相比于传统的CNN模型,具有更少的参数量,使得模型更加紧凑,占用的存储空间更小。
-
适用性广泛:CRNN不仅在场景文本识别上表现出色,还能够应用于其他图像序列识别任务,如音乐符号识别等,显示出良好的通用性。
-
高效的识别性能:CRNN在多个标准基准数据集上展示了其优越的识别性能,包括在有词典和无词典约束的情况下。
-
CTC损失函数:CRNN通常使用Connectionist Temporal Classification(CTC)损失函数来优化模型,这允许模型在训练期间处理不定长的序列输出。
CRNN模型的这些特性使其成为图像中序列识别任务的强大工具,特别是在需要处理复杂背景和多样文本格式的场景中。
一、环境配置
创建专属环境
conda create -n CRNN python=3.9
激活环境
conda activate CRNN
安装 Pytorch 环境
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple "torch-1.13.0+cu116-cp39-cp39-win_amd64.whl"
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple "torchvision-0.14.0+cu116-cp39-cp39-win_amd64.whl"