一、引言
在视频监控和智能交通系统中,多目标跟踪是一项关键技术,它涉及检测视频中的多个目标,并在视频帧之间维持每个目标的身份。DeepSORT算法作为SORT算法的扩展,通过结合深度学习和传统的跟踪技术,提高了目标跟踪的准确性和鲁棒性。本文将深入讲解DeepSORT算法的原理和流程,并对Deepsort的代码进行介绍。
二、DeepSORT算法原理
DeepSORT算法的核心在于其对目标的外观特征和运动特征的联合使用,以及对目标匹配问题的优化处理。该算法通过融合目标检测的结果,结合匈牙利算法和卡尔曼滤波等技术,实现对多个目标的持续跟踪。
DeepSORT算法的主要步骤
-
目标检测:DeepSORT算法依赖于目标检测器来确定视频中每一帧的目标位置。常用的目标检测器包括YOLO、Faster R-CNN等。检测器的输出通常包括目标的边界框(bounding box)和类别。
-
特征提取:DeepSORT使用深度学习模型来提取目标的外观特征。这些特征对于目标的再识别(re-identification,简称Re-ID)至关重要,因为即使目标在视频中被临时遮挡或丢失,这些特征也能帮助算法重新识别和关联目标。
-
匹配和跟踪:DeepSORT算法中的匹配过程涉及到计算检测框和预测框之间的相似度,并使用匈牙利算法来找到最优匹配。这个过程还包括卡尔曼滤波器的使用,它根据目标的历史运动信息来预测其在下一帧中的位置。
-
卡尔曼滤波:用于预测目标在下一帧中的位置。
-
匈牙利算法:用于计算检测框和预测框之间的最优匹配。
-
-
级联匹配:DeepSORT中的级联匹配是一种特殊的机制,它首先尝试将检测结果与高置信度的轨迹进行匹配,然后再与低置信度的轨迹进行匹配。这有助于提高匹配的准确性,尤其是在目标被遮挡或短暂消失时。
-
轨迹管理:DeepSORT维护每个目标的轨迹,并对新检测到的目标初始化新的轨迹。它还设置了确认状态(confirmed)和未确认状态(unconfirmed),以处理遮挡和临时丢失的情况。
DeepSORT算法流程
-
初始化Tracks:在视频的第一帧中,基于目标检测器的输出,为每个检测到的目标创建一个新的Tracks,并将其状态设为Unconfirmed。此时,由于是第一帧,所以所有的Tracks都处于unconfirmed状态。
-
预测