立定跳远视觉监控算法的研究【毕业设计】

目录

摘  要

ABSTRACT

1 绪 论

1.1  目的意义

1.2  国内外研究现状

1.3  研究内容

2 立定跳远视频的采集

2.1  立定跳远的关键动作

2.1.1起跳角度

2.1.2起跳速度

2.1.3腾空中小腿摆动的幅度

2.1.4落地角度

2.2  视频采集

2.2.1立定跳远视频的采集

2.2.2视频转换图像

2.2.3RGB颜色空间

2.3  采集条件

2.3.1光

2.3.2背景

2.3.3评分标准

2.3.4特征性

3 立定跳远图像特征的提取

3.1  立定跳远图像分割

3.1.1图像分割方法

3.1.2图像分割特征

3.1.3分割阈值

3.1.4图像分割的优化

3.1.5图像分割的实验结果

3.2  立定跳远图像特征提取

3.2.1关键动作特征量对应特征

3.2.2实验结果与分析

4 立定跳远关键动作特征量计算

4.1  计算公式

4.2  实验结果与分析

5 结论与展望

5.1  结论

5.2  展望


摘  要

立定跳远是一项常见的体育运动,也是我国对学生进行体能测试中的项目之一。为了更好的对立定跳远进行监控和分析,掌握立定跳远过程中身体姿态情况,进行有效的训练和调整。本文提出了一种基于机器视觉监控技术的立定跳远关键动作特征量的计算的算法,包括:起跳角度、起跳速度、腾空中小腿摆动幅度、落地角度。首先采集立定跳远视频,为了对跳跃过程中各个阶段的监控和分析。通过视频转成图像,利用阈值图像分割方法提取,分割出人体轮廓;然后利用机器视觉算法对关键特征进行处理和分析,得出跳远者在不同阶段的姿态和动作特征;最后计算出立定跳远关键动作特征量。由实验得到样本1起跳角度k为34.6度;起跳速度v为2119.8像素点/s;腾空中小腿摆动幅度s为740.0像素点;落地角度k为10.2度,有效地监控和分析跳远者在立定跳远过程中的动作特征和表现。该算法的应用可以为老师和学生提供更为直观和全面的监测数据,有助于优化训练方案和提高该项运动个人成绩。

关键字:立定跳远;机器视觉;视频采集;动作特征

ABSTRACT

Standing long jump is a common sports activity and one of the items for physical fitness testing among students in China. In order to better monitor and analyze the standing long jump process, it is necessary to master the body posture during the jump and carry out effective training and adjustments. This paper proposes an algorithm for calculating the key action feature quantities of standing long jump based on machine vision monitoring technology, including take-off angle, take-off speed, swing amplitude of the lower leg during flight, and landing angle. Firstly, standing long jump videos are collected in order to monitor and analyze each stage of the jump process. The video is converted into an image and the body contour is segmented using a threshold image segmentation method. Then, machine vision algorithms are used to process and analyze the key features, and the posture and action features of the jumper at different stages are obtained. Finally, the key action feature quantities of standing long jump are calculated. The experimental results showed that the take-off angle k of sample 1 was 34.6 degrees; the take-off speed v was 2119.8 pixel points/s; the swing amplitude s of the lower leg during flight was 740.0 pixel points; and the landing angle k was 10.2 degrees. This algorithm effectively monitors and analyzes the action features and performance of jumpers during the standing long jump process. The application of this algorithm can provide teachers and students with more intuitive and comprehensive monitoring data, which is helpful for optimizing training programs and improving individual performance in this sport.

Keywords: Long jump; Machine vision; Video collection; Motion characteristics

1 绪 论

1.1  目的意义

立定跳远由于实施简单、效果明显,是许多年龄阶段每年体质测试的必测项目,现逐渐成为义务教育阶段重要的体育考核方式之一。在南宁中考中体育与健康就占了60分,在中考成绩中占了一定的比例[1],这还关乎是否能进示范性高中,立定跳远就成为广大考生练习的重中之重,这使得立定跳远姿态的相关研究越来越多。而对于学生立定跳远,体育老师还使用着老一套的方法,效率低,学生存在着下肢力量弱、起跳角度 不当、收腹举腿不积极和落地前小腿前伸不主动等系列问题。现有条件下,立定跳远整个过程是难以准确测量的。

立定跳远视觉监控算法的研究的目的主要是为了开发一种能够准确测量立定跳远表现的计算机算法。这种算法通过分析视频或摄像机图像来测量学生的跳跃表现。这种算法的研究对于学生和学生的老师来说都是非常有意义的,因为它可以帮助学生提高自己的立定跳远表现,并且能够作为辅助为老师提供准确的信息,以便更好地指导学生训练[2]。这种算法的成功应用可以为立定跳远运动员提供借鉴,也有助于改善人类对于该运动项目的认知和理解,运动员的跳跃表现是由多种因素共同作用的结果,例如身体素质、技术水平、心理状态等[3][4]。这些因素对于运动员的表现都有重要的影响,而通过研究这种算法,可以更好地理解这些因素的作用机制,从而更好地指导运动员的训练和提升运动员的竞技水平。进行高效的训练。此外,这种算法还可以用于医学研究中,帮助医生更准确地评估患者的运动能力和身体健康状况。在更广泛的层面上,这种算法的研究也可以推动人工智能领域的发展,为机器学习和计算机视觉等技术提供新的应用领域。

1.2  国内外研究现状

随着计算机视觉和机器学习技术的发展,研究者们开始探索如何利用这些技术来实现立定跳远的自动化测量和分析。传统的立定跳远测试方法需要使用压力传感器或红外传感器等专业设备进行测量,而这些设备不仅价格昂贵,而且在测量过程中需要进行移动和布置,不太方便。近年来在国内外,基于机器视觉技术的立定跳远视觉监控算法逐渐受到广泛关注和研究。国内外的研究者们提出了各种不同的算法来实现立定跳远的人体运动姿态识别(HAR)、身体特征提取、距离和高度测量等。

其中,在距离和高度测量方面,许多研究基于计算机视觉技术实现了立定跳远成绩的自动测量。例如,王震(2018)提出了一种基于图像识别的立定跳远自动测距系统,采用ARM微处理器为核心,包括射频识别、高清高速自动对焦摄像头等模块,以射频识别模块对用户身份进行检测,以高清高速自动对焦摄像头为图像采集设备,通过算法进行图像处理,实现准确测量用户成绩[5]。牟书辉(2022)提出了一种基于人体姿态视觉判断的立定跳远成绩测量方法,需要单个摄像头采集视频图像,分析躯干、腿、脚部关键点信息,判断运动员所处的跳远状态;通过检测人体姿态和背景差分等技术,最终实现了精准的跳远成绩测量[6]。此外,还有提出基于红外线技术和嵌入式系统相结合实现立定跳远自动测量的解决方案,并设计了立定跳远测距仪[7]。还有通过蓝牙将采集的人体运动姿态数据传输到上位机,经过滤波预处理后利用算法识别起跳点与落地点,并结合运动学规律拟合出计算公式,从而得出准确的跳高跳远结果[8]。

在姿态识别方面,基于深度学习的神经网络已成为当前较为流行的方法[9]。贾亮等人在2020年提出了一种基于BP神经网络的人体运动姿态识别方法,使用可穿戴式传感器采集运动数据,运用滑动时间窗方法提取时域和频域特征生成特征向量,然后采用阈值分类方法区分静止和运动,BP神经网络算法区分运动的姿态[10]。此外,有学者设计并实现了一种基于人体姿态识别技术的立定跳远动作智能评估系统。该系统通过对标准姿态视频进行关键点估计和数据预处理,构建了立定跳远标准动作数据信息库。然后采用摄像头捕获待评估人员姿态,将其与库中的标准姿态进行关键帧匹配,并综合采用皮尔逊积矩相关系数、计算向量相似度及关键特征姿态角度等方法定义了立定跳远动作规范性评价指标,以进行姿态的差异化比对[11]。在国外还有研究者们还使用多种公开数据集来验证算法的性能,并提出了新的基于复杂度和表现水平的动作分类方法。然而,目前的HAR技术还存在一些局限性,例如对光照、视角等因素的敏感性、准确性等方面的挑战[12]。

在身体特征提取方面,刘志鹏学者在2022年采用特征提取方法识别人体姿势图像,结合帧片段扫描技术实现高校体育训练过程中的人体姿势图像采样。通过融合边缘轮廓特征分解方法对人体姿势视觉特征表达进行进一步处理,建立人体姿势图像的视觉空间融合度分析模型,结合模糊度辨识方法实现图像去模糊度处理,从而提高人体姿势特征分析能力。根据姿势特征分析结果,采用自适应的图像信息处理技术实现高校体育训练过程中的人体姿势实时识别[13]。

此外还有学者将目标检测分为基于背景建模和基于前景建模的方法,对背景建模和特征表达方法进行了归纳总结。然后将跟踪方法分为生成式和判别式,并对基于统计的表观建模方法进行了归纳总结[14]。然而,以上国内外研究方法都存在一定的局限性,例如需要使用多台设备、对图像数据进行复杂的处理等,大部分研究都是对立定跳远成绩测量,很少有对立定跳远过程监控的算法,无法对训练者提供参考提升成绩。本研究提出了一种立定跳远视觉监控算法,不需要额外的设备、复杂的布置移动和图像处理,通过图像阈值分割等方法实现了对立定跳远过程中四个检测量的检测,为训练者提供数据参考。

1.3  研究内容

本文通过研究分析采集到的立定跳远视频,并通过判断关键帧来获取四个检测量数据,最终实现对立定跳远过程中几个检测量的检测,其流程图如图1-1所示。该算法的研究内容主要包括以下几个方面:

(1)视频的采集:使用手机摄像头采集跳远者跳跃的视频,选择合适的摆放位置和拍摄角度以获得清晰的图像。

(2)图像处理:对由视频转换成的图像进行处理,准确地分割出人体的轮廓,并且排除一些背景噪声的干扰。

(3)特征的提取:对处理过后的图像进行特征的提取,后续的检测量都依赖于从视频图像中提取出跳远者的关键特征。

(4)参数计算和分析:基于上述步骤,对跳远者运动过程中的关键帧进行图像处理和分析,计算出关键的运动参数,实现立定跳远监控算法,并进行实验测试,评估算法的性能和可靠性。

2 立定跳远视频的采集

2.1  立定跳远的关键动作

2.1.1起跳角度

研究表明,起跳角度是立定跳远运动中影响成绩的重要因素之一[15]。起跳角度指的是训练者离开地面时,身体与地面的夹角。起跳角度的大小直接影响训练者的跳跃高度和水平距离,因此也会直接影响训练者的立定跳远成绩。通常来说,当起跳角度小于最佳起跳角度15度时,跳远者立定跳远的距离就越短。这是因为起跳角度过小会导致运动员离地面的高度过低,进而影响训练者的跳跃高度和距离。相反,起跳角度过大时也不利于立定跳远成绩的提高,因为起跳角度过大会导致训练者的跳跃高度过高,力量大部分作用在垂直方向上,水平方向上的力量过小推动不了身体水平移动,进而影响立定跳远的成绩[16][17][18]。

因此,训练者在进行立定跳远训练时,需要注意自己的起跳角度,并通过训练来掌握合适的起跳角度。同时,体育老师也应该关注训练者的起跳角度,并通过技术指导和训练来帮助训练者提高立定跳远成绩。本研究中定义起跳角度为起跳瞬间跳远者身体躯干与竖直向下方向的夹角θ1,以度数为单位表示,如图2-1所示。

2.1.2起跳速度

起跳速度指的是训练者从静止状态到跳起时的速度。越快的起跳速度,跳远者越能够利用身体的动能和弹性,起跳时的动能和动量越大,跳得更远,提高立定跳远的成绩。此外,起跳速度还可以帮助训练者在立定跳远起跳时获得更好的起跳位置和更高的起跳高度,从而有更长的空中滞留时间,进而能够跳得更远[19]。

总之,起跳速度对于立定跳远的成功至关重要,因为它直接决定了训练者立定跳远的能力,所以对该变量的检测可以对训练者训练时提供参考,提高立定跳远的成绩。在本研究中,起跳速度的定义为身体躯干在起跳瞬间向上运动的距离除以两帧之间的时间差,以像素点/秒为单位。具体地,在图2-2中,用箭头表示身体躯干向上运动的方向和运动的距离d,将d除以两帧之间的时间差即可得到起跳速度。

2.1.3腾空中小腿摆动的幅度

小腿摆动幅度指的是运动员在腾空过程中小腿的摆动范围,腾空中小腿摆动的幅度是立定跳远运动中不可忽视的因素之一。首先,空中小腿摆动的幅度会影响身体的旋转和姿态,从而影响落地时的着地角度和着地部位,进而影响立定跳远的距离。较大的空中小腿摆动幅度可以帮助身体更好地保持平衡,减少在空中的偏移,同时也可以增加身体的旋转,使得身体在落地时更容易达到合适的着地角度和部位,从而增加立定跳远的距离。

其次,收腹也能影响身体的姿态和稳定性。收腹可以使得身体更加稳定,减少因为惯性而在空中发生的偏移,同时也可以提高身体的高度,使得立定跳远的距离更远。此外,收腹还可以增加腰部和腿部的肌肉张力,提高起跳速度和力量,进一步增加立定跳远的距离[20]。

因此,空中小腿摆动的幅度受到收腹影响,对于跳远者来说,要在腾空时注意控制好小腿的摆动幅度,同时保持收腹的姿势,可以达到更好的立定跳远效果。如果小腿摆动幅度较小,跳远者的空中滞留时间也会较短,立定跳远距离也会受到限制。而如果小腿摆动幅度较大,跳远者可以更好地控制身体的姿态,保持稳定的飞行姿势,从而获得更长的空中滞留时间,通常情况下,小腿的摆动幅度越大,能量的转化就越充分,最终可以产生更大的距离,跳得更远。

总之,小腿摆动幅度对于立定跳远成绩的提高非常重要。通对该变量的测量可以为跳远者提供腾空时收腹提腿的是否充分,进而在训练时改善相应的情况,提高立定跳远成绩。本研究中,腾空中小腿摆动幅度是指起跳后,小腿在空中水平方向上的位移距离s,如图2-3所示,以像素点为单位。

2.1.4落地角度

落地角度是指跳远者在落地时的身体与地面的夹角,对立定跳远的成绩也有着重要的影响。在立定跳远的过程中,跳远者需要在空中保持一个良好的姿态,以最大限度地利用身体的动能和弹性。然而,如果在着地时角度不正确,就可能会给跳远者踝关节带来较大的冲击力,甚至出现损伤。需要注意的是,当落地角度过小时可能产生一种势能,使人体不自觉地向后倾斜,影响立定跳远的最终成绩。当然,落地角度不可过大,否则依然无法保持重心,有较大的可能会往前摔倒,使跳远者受伤[21]。为了在立定跳远中尽可能地减少这种情况,本文对落地角度进行测量,为跳远者提供参考,避免出现上述情况,保护跳远者,提高立定跳远成绩。定义落地角度为落地时跳远者身体躯干与竖直向下方向的夹角θ2,以度数为单位表示,如图2-3所示。

2.2  视频采集

2.2.1立定跳远视频的采集

当采集立定跳远视频时,采用1920×1080分辨率和60帧/s录制立定跳远视频,为更好的测量本文研究的四个变量,一般选择与跳远者立定跳远垂直的方向架设摄像头,采集立定跳远的视频,使用三脚架或其他稳定器来固定摄像机,然后通过立定跳远的视频获取立定跳远的图像。这样可以提供更高质量更清晰的图片,避免出现模糊或不清晰的情况,使得后续的图像处理变得更简单。 

拍摄完毕后,还需要对视频进行后期处理,以获得更好的效果。视频编辑软件可以帮助你对视频进行修剪等操作,以使视频更易于观察和分析,方便后续对图像的处理。同时,你还可以将视频保存为适当的格式,以便进行后期分析和处理。

2.2.2视频转换图像

在将立定跳远的视频转化为立定跳远图像序列后,可以得到一系列的图像。在立定跳远监控算法中,立定跳远图像是非常重要的。这些图像提供详细的视觉信息。

立定跳远图像可以提供详细的动作分析。可以观察图像以确定跳远者的技术问题,如起跳姿势、着陆方式、空中姿势等。这些详细的分析可以帮助体育老师和学生改善技术,提高表现。此外,通过捕捉不同角度的图像,可以获得更多信息以支持分析,例如从不同方向拍摄的图像可用于分析身体位置和运动轨迹。

除了提供动作分析,立定跳远图像还可以用于提供反馈。评估者可以通过观察图像并提供建议来帮助跳远者改善技术。通过提供详细的反馈,跳远者可以更容易地了解他们的技能短处,并针对这些问题进行训练

最后,立定跳远图像也可以用于支持科学研究。这些图像可以被收集、存档和分析,以帮助研究人员更好地了解跳远者的技术和身体机能。研究人员可以使用这些图像进行各种数据分析,以确定不同因素对立定跳远性能的影响。Xt01
总之,立定跳远图像对评估、改进和研究立定跳远技能非常重要。通过使用这些图像,评估者和体育老师可以提供详细的反馈和改善建议,跳远者可以更好地了解自己的技能问题,研究人员可以收集和分析数据来进一步理解这项运动。因此,立定跳远图像是评估、改进和研究立定跳远技能的重要组成部分。采集到的立定跳远图像如图2-4所示,就是一幅立定跳远视频所提取的起跳图像,该图像的像素分辨率为1920×1080。

2.2.3RGB颜色空间

RGB颜色空间是目前应用最广泛的颜色模型之一,除了在计算机图形学和数字图像处理领域中被广泛使用之外,它也在印刷、摄影、电视等多个领域得到广泛应用。

在数字图像处理中,RGB颜色空间可以表示图像中每个像素的颜色信息。对于彩色图像,每个像素都由红、绿、蓝三个颜色通道的值组成。通过对这三个颜色通道进行不同的加权和调整,可以实现图像的亮度、对比度、色调等调整。此外,在数字图像处理中,RGB颜色空间还常用于图像分割、边缘检测、色彩检测等领域。

在印刷和摄影领域中,RGB颜色空间也起着重要的作用。印刷和摄影中常使用的CMYK颜色模型,实际上是从RGB颜色空间中派生出来的。在印刷和摄影中,CMYK颜色模型用于表示颜色墨水或颜料的成分,而RGB颜色空间则用于表示在照相机或显示器中的原始颜色。本文中的图2-1展示了一个RGB颜色空间的图像。在该图像中,身体区域的RGB颜色通道值分别为12(红色通道)、16(绿色通道)和19(蓝色通道),该颜色被识别为黑色;背景区域的RGB颜色通道值分别为180(红色通道)、175(绿色通道)和181(蓝色通道),该颜色被识别为浅灰色。

2.3  采集条件

2.3.1光

在立定跳远视频的采集中,光的重要性是不可忽视的。适当的光照条件可以提高视频的质量和清晰度,有助于更准确地观察和分析起跳者的动作和姿势。在采集立定跳远视频时,还需要注意摄像机的稳定性和光线的充足性。运动员的动作非常快,如果光线不足,就很难获取清晰、准确的数据。因此在白天进行拍摄,避免在昏暗的环境中拍摄,在昏暗的环境中可以开灯进行照明。首先,光线的强度对于视频的质量至关重要。光线过强或过弱都会影响视频的质量,过强的光线可能会使图像过曝或反光,过弱的光线则可能会使图像模糊或暗淡。因此,在采集立定跳远视频时,应选择适当的光照强度,以确保图像的清晰度和准确性。其次,光线的方向和角度也对视频的质量产生重要影响。光线的方向和角度不同,可能会导致视频中出现阴影、反光等问题,影响观察者对于视频内容的理解和分析。在立定跳远视频的采集中,应选择适当的光线方向和角度,以便光线能够均匀地照亮场地和跳远者,避免出现影响视频质量的阴影和反光。最后,光的色温也对于视频的质量产生影响。色温是指光源发出的光线所呈现的颜色。不同色温的光线会使视频呈现不同的色调和效果。在立定跳远视频的采集中,应选择适当的色温,以确保视频呈现真实的颜色和色调。

在本次立定跳远视频采集中,采集立定跳远视频的地点是广西科技大学柳东校区的教室,在教室中使用了六盏灯进行照明,这样子可以有效地保证拍摄到的视频图像具有足够的亮度和对比度,清晰地展示被测试者的动作细节。此外,为了避免光线的干扰,教室的窗户需要拉上窗帘,这样消除了来自窗户的外部光线,确保视频中的光线来源只有室内的灯光和采集到的视频光线是均匀的,不会产生过度的阴影和反光,减少视频中光线变化的干扰因素。

2.3.2背景

在立定跳远视频的采集中,背景也是一个非常重要的因素。合适的背景能够提高视频的质量和可观性,让观察者更容易理解和分析视频中的内容。首先,背景应该是简洁、干净的。一个简洁的背景能够让观察者更加关注运动员的动作和姿势,避免分散注意力。在立定跳远的视频中,最好的背景是单一色调或单一图案的背景。例如,可以使用单色的背景墙或单一颜色的地面。其次,背景应该有足够的对比度。如果背景和运动员的衣服颜色相似,那么在视频中就很难区分运动员和背景。这会对视频的质量和可观性产生影响。因此,在立定跳远视频的采集中,应选择与运动员衣服颜色形成鲜明对比的背景。最后,背景应该稳定。如果背景中出现了运动员以外的移动物体,如人、车辆、风景等,就会干扰观察者对于运动员动作的理解和分析。在立定跳远视频的采集中,应尽量避免这些干扰因素,选择一个稳定的背景[22]。

综上所述,背景在立定跳远视频的采集中也是一个非常重要的因素。合适的背景能够提高视频的质量和可观性,让观察者更容易理解和分析视频中的内容。在本次立定跳远视频采集中,立定跳远视频拍摄的背景是教室内白色的墙壁,但由于教室内的墙壁与地面之间存在一道黑色的瓷砖踢脚线,为了获得一个纯白色的实验背景,使用了A4纸来挡住黑色瓷砖。这样可以确保背景是纯白色的,能够更好地突出起跳者的动作和轨迹,并方便后续的图像处理和分析。同时,摄像头架起的位置要能够囊括起跳者的整个跳跃过程,确保采集到完整的立定跳远信息。实验背景布置完成后如图2-5所示。

2.3.3评分标准

为了对跳远成绩进行评分,本研究参考了《国家学生体质健康标准》中的立定跳远评分表。根据该标准,跳远者的跳远成绩和年级段进行划分,将其对应到相应的等级和单项得分。

评分标准的具体内容,如表2-1所示,包括不同年级的男生的跳远成绩范围、等级和单项得分。为了方便查看,本研究在地面上粘贴了相应的评分标准,以供参考。

表2- 1男生立定跳远单项评分表(单位:厘米)

等级

单项得分

大三大四

优秀

100

275

95

270

90

265

良好

85

258

80

250

74

238

70

230

68

226

66

222

64

218

62

214

60

210

不及格

50

205

40

200

30

195

20

190

10

185

2.3.4特征性

在立定跳远视频的采集中,特征性的重要性也不可忽视。所谓特征性,指的是在视频中能够清晰地看到跳远者的身体结构和动作的特征,这对于观察分析跳远者的动作和姿势非常重要。

特征性的重要性在于能够提高视频的可信度和可重复性。如果视频中能够清晰地看到跳远者的身体结构和动作的特征,那么这个视频就更有可能被其他专业人士或者研究者用来进行分析和评估,从而提高视频的可信度和可重复性。特征性的重要性在于能够提供更多的数据信息。在立定跳远的视频中,能够清晰地看到跳远者的身体结构和动作的特征,可以为分析者

提供更多的数据信息,例如运动员的身高、臂长、腿长、步伐长度、起跳高度等,这些数据信息对于分析和评估跳远者的技术水平非常重要。特征性的重要性在于能够提高观察者对于跳远者的理解和分析能力。如果视频中能够清晰地看到跳远者的身体结构和动作的特征,那么在后期处理时可以更加容易地理解和分析跳远者的动作和姿势,更好的检测出四个变量,从而提高观察者对于跳远者的理解和分析能力。

为了提高视频中跳远者跟背景的对比度,提取的人物轮廓更加清晰,在采集视频时,让跳远者身穿黑色衣服,使用上述背景图2,减少跳远者与背景的干扰,使跳远者的动作更加突出,更容易被识别和分析,获取高质量的图像和数据,更好地求取跳远者的多个监控参数数据。

立定跳远视频采集中的特征性主要是通过以下方式体现:

(1)跳远者身穿黑色衣服。黑色可以更好地突出跳远者的身体轮廓,这样就可以更清晰地观察跳远者的动作和姿态,方便进行后续的分析和训练。

(2)背景为纯白色。白色背景可以让跳远者与背景形成鲜明的对比,这样可以减少背景对跳远者身影的干扰,同时也可以提高图像的对比度,获得更清晰、更高质量的图像。

(3)拍摄角度和距离的控制。为了能够全面地捕捉跳远者的动作和姿态,摄像机的角度和距离进行了合理的控制。在跳远者的侧面来进行拍摄,可以清晰地观察到跳远者的起跳、飞行和着地过程。

(4)光线的控制。在教室中使用了六盏灯进行照明,窗户拉上窗帘,这样消除了来自窗户的外部光线,确保视频中的光线来源只有室内的灯光和采集到的视频光线是均匀的,不会产生过度的阴影和反光,减少视频中光线变化的干扰因素。

3 立定跳远图像特征的提取

3.1  立定跳远图像分割

3.1.1图像分割方法

立定跳远图像分割是指将一张立定跳远图像分割成多个不同的区域,以便进行更深入的分析和处理。以下是一些常见的立定跳远图像分割方法:

基于阈值的分割方法:该方法通过设定一个阈值,将图像中的像素值分成两个部分,一部分大于阈值,另一部分小于等于阈值,从而实现图像的分割。常见的基于阈值的分割方法包括Otsu阈值法。

基于边缘的分割方法:该方法通过检测图像中的边缘来实现图像的分割。常见的基于边缘的分割方法包括Canny算子和Sobel算子。

基于区域的分割方法:该方法将图像中的像素分成不同的区域,每个区域具有相似的特征。常见的基于区域的分割方法包括区域增长法和分水岭算法。

基于聚类的分割方法:该方法将图像中的像素聚类成不同的类别,每个类别具有相似的特征。常见的基于聚类的分割方法包括K均值算法和谱聚类算法。

基于深度学习的分割方法:该方法利用深度学习技术对图像进行分割,可以得到更加准确的分割结果。常见的基于深度学习的分割方法包括卷积神经网络(CNN)和全卷积神经网络(FCN)等。

基于阈值的图像分割方法是一种简单但有效的分割方法。该方法基于图像像素的灰度值,将像素分为两个或多个类别,从而实现目标区域的提取。具体来说,该方法首先需要选择一个合适的阈值,将像素分为两个类别,一类被认为是目标区域,另一类则是背景区域。常见的阈值选择方法包括手动选择阈值、全局自适应阈值和局部自适应阈值等。其中,手动选择阈值是最简单的方法,但需要对图像进行多次试验来得到最佳阈值,因此比较耗时;全局自适应阈值根据整幅图像的灰度分布情况自动确定一个阈值,但不适用于灰度分布不均匀的图像;局部自适应阈值则根据像素周围的灰度值分布情况来自适应地选择阈值,适用于大部分情况。

在选择好阈值后,就可以将像素分为两个类别。一般来说,使用二值图像来表示分割结果,其中目标区域被表示为黑色像素,背景区域则为白色像素。可以使用各种形态学操作(如膨胀、腐蚀、开运算、闭运算等)来进一步处理二值图像,以去除噪声和填补空洞,得到更加准确的目标区域。

需要注意的是,基于阈值的分割方法对图像质量和光照条件比较敏感。如果图像质量较差或光照条件不理想,选择适当的阈值会比较困难,分割结果可能不够准确。因此,在实际应用中,需要结合其他分割方法进行优化和改进。

本文采用基于阈值的分割方法对立定跳远图像进行分割,其具体步骤如下:

(1)将彩色立定跳远图像灰度化。

(2)选取合适的阈值,将灰度图像转化为二值图像。

(3)对二值图像进行形态学处理,包括腐蚀、膨胀、开运算和闭运算等。

3.1.2图像分割特征

彩色图像转换成灰度图像时,每个像素的灰度值是通过对该像素的红、绿、蓝三个分量进行加权平均得到的。通常使用以下公式计算灰度值:

               

其中,0.2989、0.5870、0.1140是根据人眼对不同颜色的敏感度而得到的加权系数。例如,背景区域的RGB颜色通道值分别为180(红色通道)、175(绿色通道)和181(蓝色通道),根据公式3-1计算得到该像素的灰度值就为177.161。这个灰度特征可以用来分析图像的亮度、对比度和细节等信息。通过对灰度图像进行处理,例如边缘检测、阈值分割等操作,可以进一步提取图像的特征,用于图像识别、目标检测等应用。

灰度指的是图像中每个像素点的亮度值,通常以0-255的整数表示,0表示黑色,255表示白色,灰度值代表了图像中每个像素的亮度,因此具有很高的区分度和较强的鲁棒性。灰度是图像处理中常用的一种特征。在立定跳远图像分割中,灰度可以作为一种重要的特征,可以通过灰度的变化来分割出人体和背景区域,用于提取人体轮廓和背景信息,可以有效地分割出人体特征,图2-1所示立定跳远图像的灰度图像如图3-1所示。

在本研究中,使用了灰度图像进行图像分割,并绘制出图3-1的灰度直方图,如图3-2所示。灰度直方图(gray-level直方图)是对一幅灰度图像中像素灰度级别分布情况的统计描述,它记录了每个灰度级别在整个图像中出现的次数,在灰度直方图中,横坐标代表灰度级别,纵坐标代表该灰度级别在整个图像中出现的像素数目。通过观察灰度直方图,发现灰度值主要集中在0~77和100~200两个区间内。实验中,人体所在的区域比较暗,可以判断人体所在的灰度值区间在0到77的区间内,将该灰度值区间作为阈值。实验背景较明亮,因此可以判断背景所在的灰度值区间在100到200的区间内。

3.1.3分割阈值

在本研究中,采用基于阈值的图像分割方法对立定跳远图像进行处理,阈值的选取对图像分割效果有着重要的影响。过高或过低的阈值都会导致分割不准确,从而影响到后续的特征提取和分析。一般来说,最佳阈值应该能够将前景和背景的像素区分开来,并且能够准确地捕捉到目标的轮廓。因此,在选择阈值时需要综合考虑图像的亮度、对比度等因素,并进行反复调试,以得到最佳的分割效果,将感兴趣的目标(即人体)从背景中分离出来。为了找到最佳的阈值分割方法,分别采用以下方法进行图像分割:

人为选择阈值:根据图像的灰度直方图的形状来选择一个合适的阈值。具体来说,选取直方图中两峰之间的波谷所对应的灰度值作为阈值,将图像分为背景和目标物体两部分。由图3-2灰度直方图可得人体灰度值主要集中在0~77,可得阈值约为0.3,图3-1经过二值化处理后得到的二值图像如图3-3所示。

基于Otsu(最大类间方差法)阈值分割算法:一种用于图像处理的自适应阈值分割方法,由日本学者大津展之于1979年提出,被广泛应用于图像处理领域。得到的阈值为0.356,处理后得到的二值图如图3-4所示。

基于自适应阈值法:将图像分成若干个小的局部区域,对每个局部区域分别计算阈值,以适应不同局部的灰度分布,处理每个像素所用的阈值是不一样的。算法使用的全局阈值与局部阈值之间的差异的权重为0.95。值越小,算法越倾向于选择全局阈值,值越大则越倾向于选择局部阈值。如图3-5所示。

         

通过对比三张经过不同方法二值化处理后的图像,发现由人为选择阈值分割(图3-3)在分离人体轮廓和背景方面表现最好。其在保留身体躯干信息的同时,也成功地避免了过多噪声干扰,为后续的特征提取提供了可靠的基础。相比之下,图3-4和图3-5的分割效果都不如图3-3理想。图3-4的噪声干扰较多,导致分割后的人体轮廓不够清晰;而图3-5由于阈值设置不当,人体轮廓信息缺失了很多,导致分割效果很差。

值得注意的是,阈值的选择可能取决于各种因素,例如照明条件、相机设置和图像的特定特性。因此,本研究选择的阈值分割方法可能并不普遍适用于所有立定跳远图像。本研究中使用的方法可以作为类似图像分割任务中阈值选择过程的参考。

3.1.4图像分割的优化

当观察二值化的分割结果图(图3-3)时,可以发现在墙壁与地面之间的A4纸区域和墙壁上的插座区域中存在着一些细长的噪声和细小的黑色点噪声。这些噪声可能会影响到训练者在图像中的位置描述,因此进行去噪操作是非常必要的。针对这些噪声,可以采用一些方法进行分析和处理,以获得更准确的分割结果。

在图像处理研究中,形态学操作是一种有效的去噪方法。其中,腐蚀和膨胀是常用的形态学操作,它们可以通过对图像中的像素进行局部操作,来去除小的噪声和保留大的特征区域。因此,为了对立定跳远图像进行分割并去除噪点,使用了开运算形态学操作。开运算是数学形态学中的一种基本图像处理操作,通常用于去除二值图像中的小斑点或细小的图像结构。具体来说,开运算操作是先进行腐蚀操作,再进行膨胀操作,即先对图像中的每个像素点执行腐蚀操作,再对腐蚀后的图像进行膨胀操作。

通过腐蚀操作,可以消除立定跳远图像中的小斑点或细小的图像结构,并使图像中的边缘变得更加明显。而膨胀操作则可以填充图像中的空洞,使图像的整体形态更加平滑和连续。通过这两个操作的组合,开运算可以去除图像中的小噪点,保留大的连通结构,同时也可以使图像的整体形态更加平滑和自然,得到清晰的图像分割结果。在进行开运算操作时,需要选择适当的结构元素,以达到较好的去噪效果。本文选择较小的正方形结构元素。当结构元素较小时,可以更好地保留图像的细节信息,但是对于一些较大的噪声点或线,可能需要使用较大的结构元素进行去除。因此,在进行开运算操作时,需要根据具体情况进行选择,本研究中选择5×5的正方形结构元素。将图3-3的二值图进行开运算操作后的结果如图3-6所表示,可以看到二值图像中墙壁与地面之间的A4纸区域和墙壁上的插座区域的噪声被去除了。

3.1.5图像分割的实验结果

经过图像分割方法处理,得到了一个二值化的分割结果图,其中跳远者的部分被标记为前景,背景部分被标记为背景,图中黑色区域为训练者,白色区域为背景区域。图3-1所示图像的分割结果如图3-6所示,在图3-6的分割结果中,跳远者的头部被分割成一个黑色的椭圆形区域,然而,由于头部朝向侧面和头发的遮挡,头部呈现出非完整的形状;跳远者的手臂被分割成了一条黑色的曲线,但由于光照的原因,导致在二值化图像中跳远者手臂缺少了上半部分;跳远者的鞋子在二值化图像中由于鞋子有部分颜色为白色,导致在二值图中呈现为不完整的黑色区域。立定跳远图像分割的实验结果表明,由直方图灰度分布人为选择阈值的图像分割方法在分割出人体区域方面表现良好,能够准确地分割出人体的轮廓,并且能够排除一些背景噪声的干扰。

3.2  立定跳远图像特征提取

3.2.1关键动作特征量对应特征

在得到二值图像时,需要将图像中的黑色像素点以某种方式表示出来,以便于后续的处理。为了表示像素之间的相对位置,规定x轴的正方向是竖直向下,y轴的正方向是水平向右,如图3-7所示。在这种坐标系中,图像中的每个像素都可以表示为一个二

元组(x, y),其中x表示像素在图像中的列数,y表示像素在图像中的行数。将这些二元组称为像素坐标值。在本研究还用到最小二乘法,最小二乘法是一种广泛应用于数据拟合、回归分析等领域,包括线性回归、多项式回归、非线性回归等。它的优点是计算简单、可靠性高,可以有效地处理数据中的噪声和异常值。

(1)起跳角度和落地角度:采用了一种通用的标准来判断每一帧图像中训练者是否已经起跳。具体而言,以起跳者者双脚是否离地为标准,如果双脚已经离地,那么就判断起跳者已经起跳了。这张图像就是起跳角度关键帧,并将其标记为起跳角度关键帧,例如用样本1中第26帧图片举例,通过上述的图像分割技术将图像中跳远者与背景分离,并得到这个关键帧的二值图像如图3-8所示,从二值图像中提取跳远者的轮廓,将其转换为像素坐标,最后将这些坐标存储在一个数组中。选择着地时起跳者全身蹲下的最低点为标准,如果起跳者着地达到全身蹲下最低点,就将此帧图像定位为落地角度关键帧,例如样本1中第67帧图像。通过本的图像分割技术将图像中跳远者与背景分离,并得到这个关键帧的二值图像(图3-9),从二值图像中提取跳远者的轮廓,将其转换为像素坐标,最后将这些坐标存储在一个数组中。在对跳远者轮廓提取得到的像素坐标使用最小二乘法进行拟合,得到一条穿过跳远者身体的直线,使用公式3-2来表示一条拟合直线,其中y表示二值图像正方向水平向右,x表示二值图像正方向竖直向下,k表示斜率,a表示截距。使用该直线做为起跳角度和落地角度的特征计算起跳角度和落地角度。

                             

        

                             

(2)起跳速度:对视频中所有的帧进行逐一分析,在样本1中的第7帧定位到跳远者全身蹲下最低点的那一帧图像,并将其标记为起跳速度关键帧,如图3-10所示。最后,找到起跳时起跳者双脚刚离开地面的那一帧,作为计算起跳速度的关键帧,在第一个立定跳远视频中的第26帧定位到了这个关键帧,和起跳角度所用的图像一样(图3-8)。通过本文的图像分割技术将这两张图片中跳远者与背景分离,得到这两个关键帧的二值图像,从这两张二值图像中提取出跳远者的轮廓,将其转换为像素坐标,最后将这些坐标存储在一个数组中。通过这些坐标可以求取到质心坐标,而质心坐标作为跳远者身体的重心坐标,能够反映出跳远者在起跳时身体所处的位置,通过两张不同图像中跳远者质心坐标的不同,可以通过公式计算出起跳速度。因此,质心坐标可以作为立定跳远起跳速度的一个重要特征。质心坐标可以通过以下公式求取:

对于二值图像中的n个点,设第i个点的坐标为(xi, yi),二值图像上所有点的质心坐标为(),其中,表示所有点在x轴上的平均值,表示所有点在y轴上的平均值,n为点的个数。则有:

                            

使用上述公式3-3和3-4计算得到两个质心坐标,分别为(x1,y1)和(x2,y2)。其中,(x1,y1)表示第一个质心坐标,(x2,y2)表示第二个质心坐标。这些坐标的单位为像素点。

(3)腾空中小腿摆幅度:通过对立定跳远图像进行批量的图像分割,获得人体轮廓的坐标,再读取每一张图片中小腿最低点的坐标,将最低点的x坐标与999进行比较,如果小于999,则将该坐标记录下来,记录下来的坐标可以作为小腿在空中摆动的极点,提取小腿开始摆动时和小腿结束摆动时的坐标作为腾空中小腿摆动幅度对应的特征,也就是立定跳远视频中第30帧(图3-11)和48帧(图3-12)图像来计算摆动的幅度。本文中定义,(x3,y3)表示小腿开始摆动时跳远者的最低点坐标,(x4,y4)表示小腿结束摆动时跳远者的最低点坐标,s表示小腿摆动的幅度。

        

3.2.2实验结果与分析

在本节中,将重点介绍的起跳角度、起跳速度、腾空中小腿摆动幅度和落地角度特征提取的结果:

(1)起跳角度和落地角度:在本研究中,使用最小二乘法分别对图3-8和图3-9中跳远者的轮廓进行拟合,得到一条穿过跳远者身体的最佳拟合直线。拟合得到的直线分别用淡色标记在原图中(如图3-13和图3-14所示),其中图3-13中的拟合直线用作起跳角度的特征值,而图3-14中的拟合直线用作落地角度的特征值。拟合得到的一元一次方程分别为公式3-5和公式3-6,用来描述人体,并用于计算跳远者的起跳角度和落地角度。

                              

                  

        

(2)起跳速度:在本研究中,由公式3-1和公式3-2计算出样本1起跳速度两帧关键帧第7帧(图3-8)和第26帧(图3-10)中跳远者的质心坐标分别为(747,1555),(549,1155)并在图像中标识出来,如图3-15和图3-16所示,通过这种方法,成功地获取了起跳速度的特征值。记录这两帧图像之间的时间差,并结合起跳者在这段时间内的位移信息来计算起跳速度。具体地说,根据时间差来计算起跳者在这段时间内的平均速度,然后将其作为起跳速度。

        

(3)腾空中小腿摆动幅度:在本研究中,提取了样本1中小腿开始摆动时跳远者最低点(图3-11)坐标(x3,y3)和小腿结束摆动时跳远者最低点(图3-12)坐标(x4,y4),分别为(988,1488),(993,532)并在图像中标出其位置如图3-17和图3-18(所示),成功提取到了腾空中小腿摆动幅度的特征值。通过这两个坐标点的位置,可以计算出小腿在腾空期间的摆动幅度。

        

                     

4 立定跳远关键动作特征量计算

4.1  计算公式

在本研究中,使用了一系列关键动作特征量来描述和分析跳远者的立定跳远表现。这些特征量的计算公式如下:

(1)起跳角度和落地角度:起跳角度和落地角度的计算公式一样,再这里放再一起,通过最小二乘法拟合跳远者身体躯干得出的直线的斜率进行反正切函数计算得到的。具体地,假设通过最小二乘法得到的拟合直线斜率为k,角度为θ,因此,起跳角度θ1和落地角度θ2的计算公式应为:

其中,arctan为反正切函数,可将拟合直线的斜率k作为输入,计算出对应的起跳角度θ。

(2)起跳速度v:起跳速度是根据本文求质心坐标公式得出两个质心的像素坐标,再计算出两个质心坐标的距离,再除以起跳时间得到的。具体地,假设用本文求出的第一个质心坐标为(x1,y1),第二个质心坐标为(x2,y2),起跳时间为t,则起跳速度v,其中,d表示两个质心坐标之间的距离。计算公式为:

(3)腾空中小腿摆动幅度s:采用了本文提出的方法,根据跳远者最低点坐标与小腿开始和结束摆动时的坐标,计算出小腿摆动的幅度。其中,(x3,y3)表示小腿开始摆动时跳远者的最低点坐标,(x4,y4)表示小腿结束摆动时跳远者的最低点坐标,s表示小腿摆动的幅度,具体地,小腿摆动幅度的计算公式为:

4.2  实验结果与分析

本研究采集了1名成年男性立定跳远十次的视频数据,共10个样本,记录了立定跳远成绩。通过本文的视觉监控算法,计算出了每个样本的起跳角度、腾空中小腿摆动幅度、起跳速度和落地速度四个变量。如下表1所示。

表 4-1 实验数据

样本编号

起跳角度θ1(度)

起跳速度v(像素点/s)

空中小腿摆动幅度s(像素点)

落地角度θ2(度)

成绩

1

36.1 

1419.3

956

20.4

70

2

42.5

1193.7

1184

21.8

85

3

43.7

1317.4

1231

21.2

85

4

40.1

1242.6

1110

23.3

80

5

44

1364.1

1131

21.8

80

6

41.6

1469.7

1092

24.5

74

7

39.5

1312.2

1082

17.6

74

8

42

1325.9

1202

19.7

80

9

40.5

1183.3

797

23.5

70

10

42.9

1335.2

1103

21

74

从实验结果表4-1来看,可以看出,十次立定跳远的起跳角度、起跳速度、落地角度和腾空中小腿摆动幅度的数值均存在一定差异。通过对数据的统计分析发现,起跳角度θ1对落地跳远成绩有一定的影响,起跳角度越大,成绩越高。比如样本编号2和3的起跳角度分别为42.5和43.7度,成绩都为85分,比起跳角度为36.1度的样本1的成绩高了15分。起跳速度v对成绩有较大的影响,起跳速度较高的样本(例如样本编号3)成绩较好,而起跳速度较低的样本(例如样本编号9)成绩较差。这表明,在其他条件相同的情况下,越快的起跳速度通常会带来更好的成绩。空中小腿摆动幅度与成绩之间存在一定的正相关关系,即空中小腿摆动幅度越大,跳远成绩越好(例如样本编号3)。样本7的落地角度比其他样本低,成绩也比其他样本低,另一方面,样本4的落地角度比其他样本高,成绩也比其他样本高。这表明跳远者的立定跳远表现受到多方面因素的影响,同一位跳远者在同样的时间或同样的环境下进行立定跳远,也可能会出现一定程度的差别。

总体而言,本文的立定跳远视觉监控算法能够对起跳者的立定跳远表现进行全面直观的测量和分析,并为学生的训练提供有力的参考依据。同时,本文也揭示了学生立定跳远表现的多方面影响因素和相关性,为学生的训练和竞技提供了更加科学和全面的指导。

5 结论与展望

5.1  结论

本研究通过对训练者的图像进行处理和分析,提取出与立定跳远量相关的特征量,并在此基础上实现上述四个变量的自动检测。实验结果表明,通机器视觉技术可以有效地实现对这四个变量的自动检测。发现这种基于机器视觉的立定跳远量测方法,具有较高的准确性和稳定性。同时,与传统的手工测量方法相比,这种方法具有更快的测量速度和更少的人力成本。基于这些优点,相信这种方法将有助于相关辅助训练设备的开发和推广,提高训练效率和效果。

通过本研究的实验结果与分析,可以得出以下结论:

1.本文的立定跳远视觉监控算法能够对跳远者的起跳角度、起跳速度、落地角度和腾空中小腿摆动幅度等关键动作特征量进行准确测量和分析,为学生的训练提供有力直观的参考依据。

2.跳远者的立定跳远表现受到多方面因素的影响,同一位跳远者在同样的时间或同样的环境下进行立定跳远,也可能会出现一定程度的差别。

3.研究者可以利用本文的视觉监控算法进行更深入的研究,探讨立定跳远表现与其他因素之间的关系,为跳远训练和竞技提供更加科学和全面的指导。

5.2  展望

当前,本研究的立定跳远视觉监控算法已经初步研究并取得了一定的成果,但还有许多需要进一步探索和完善的方向。本实验只采集了1名成年男性的数据,因此结论可能存在一定的局限性。后续的研究需要进一步扩大样本量,并考虑不同性别、不同年龄、不同训练水平的跳远者,以得出更加准确的结论。未来的研究可以着重考虑以下几个方面:

1.算法的可靠性和实时性:现有的算法在实验室环境下表现出较好的效果,但在实际应用中可能会受到各种因素的干扰,如光照、拍摄视角、距离等。未来的研究需要进一步提高算法的准确性和实时性,以满足实际应用的需求。

2.多样性的样本数据:目前的研究大多数集中在成年男性的数据上,未来的研究需要更加广泛的采集数据,包括不同性别、不同年龄、不同训练水平的跳远者。这样才能更好地验证算法的适用性和普适性。

3.算法的深度学习和智能化:未来的研究可以结合深度学习和图像识别技术,提高算法的智能化水平,使算法能够更加自主地处理和分析跳远者的运动数据,为跳远者提供更加精准和个性化的训练建议。

4.与虚拟现实技术的结合:可以将立定跳远视觉监控算法与虚拟现实技术结合,实现更加生动、直观、互动的体育训练和竞技模拟。这样不仅可以提高跳远者的训练效果,也可以增强观众的体验感。

综上所述,未来的研究可以不断优化立定跳远视觉监控算法,结合人工智能技术和虚拟现实技术,拓展应用范围,研究立定跳远技术特点,为跳远者提供更加全面和科学的训练和表现监测服务。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

下饭的王

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值