文章目录
1. 高数预备知识
-
反函数
1)f [ f -1 (x) ] = x
2)严单必有反 -
复合函数,⭐ 掌握复合方法 (P.22 例1.4,有可能是第一问)
1)广义化
2)画图
3)写答案 -
函数四特性
1)有界,指明区间
2)单调性:求导,定义法(尤其是数列)
3)⭐ 奇偶性,f(x)-f(-x),双曲正弦,双曲余弦(P.22),对称轴的变换
4)周期性,一元积分学中有重要用途 -
⭐ 7 个结论
-
神秘的数字 0,1
-
⭐ 幂函数单调性研究(P.5)
-
1)求 √u 的最值,千万不要拿 √u 去求导,直接求 u 的最值,再开根号
2)⭐⭐⭐ 求 |u| 的最值,直接求 u2 的最值,再开根号(今年就要考这个)
3)见到多项相乘相除开方乘方求最值,取对数
4)见到 1 / u ,用 u -
√x 和 x2 在 [0,1] 所围成面积 S=1/3
-
⭐ y=ex , 极限把握好,常用面积 S=1
-
ln x 趋向正无穷和负无穷的速度是极慢的
x->0+,lim xa lnx = 0 (a>0)
-
⭐ uv = e vlnu ,u >0
-
幂指函数,考研最爱考的函数之一,xx 求极限和求导,一定要转成 e xlnx
-
面积,得记住
-
放缩,趋于 0 ,|sinx| < |x|
-
三角函数特殊函数值(P.6)
-
⭐ arcsin x + arccos x = π / 2 (-1 ≤ x ≤ 1)
⭐ arctan x + arccot x = π / 2 (-oo ≤ x ≤ +oo) -
证 f(x) = 常数 C
1.求导 f '(x) = 0
2.代入特殊值 f(x0) = C -
xx ,x2x ,x3x 的图像
-
三个重要的分段函数
⭐⭐⭐ x-1 < [ x ] ≤ x -
图形变换
左右平移:ln(x+1) ≤ x,x > -1
上下平移:ex ≥ x+1
sin2x 、2sinx -
在 x=0 的邻域中,|sinx| = sin|x|
-
⭐极坐标系
⭐ 直角系观点画极坐标系下图像 r = r(θ)
心形线(外摆线),三叶玫瑰线,阿基米德螺线(求0 - 2π 所围面积 ),伯努利双纽线 -
⭐ 等比数列,下图考的太多了
-
⭐⭐⭐ 裂项相消法
-
八个诱导公式,极为重要(P.17),换元法里用
-
和差公式(P.18)
-
⭐ 对数运算法则,对于多项相乘相除开方乘方,先取对数再求导,对数求导法
eg:
-
ln(1+1/x) = ln(x+1) - ln x
-
连续不等式证明,往往考虑中值定理
eg:
-
因式分解
⭐ 二项式定理
-
华里士公式(点火公式),必考无疑
-
⭐⭐⭐ 常用不等式(P.20)
⭐ √ab ≤ a+b/2 ,|ab| ≤ a2+b2 /2
2. 数列极限
⭐⭐ 夹逼
⭐⭐⭐单调有界准则
- 单独证明极限存在,三步曲
- 已知某一极限,证另一极限,定义法
- ⭐ 重要思路:欲证 an 趋于 0 ,转化为欲证 |an| 趋于 0 ,若使用夹逼准则,省一半力气
3. 函数极限与连续性
-
邻域,开区间
-
⭐ 函数极限定义 ,注:0 < |x-x0| ,防止 x 与 x0 重合
-
极限存在充要条件
-
等式脱帽法,误差是几阶要具体问题具体分析(2023年可能会考)
-
泰勒公式(P.37)
-
唯一性,4 个 ,⭐⭐⭐ [x] (2023可能会考)
-
局部有界性
-
局部保号性,可以考证明,有技巧
-
⭐ 记号运算规则,即高阶无穷小的计算规则(P.39)
-
泰勒展开原则
1)A / B 型,上下同阶
2)A - B 型,幂次最低 -
海涅定理
-
无穷小定义
-
无穷小的比阶,5个(P.39)
-
无穷小运算规则
1)有限个无穷小的和是无穷小
2)有限个无穷小的乘积是无穷小
3)有界函数与无穷小的乘积是无穷小,主要考这个 -
常用等价无穷小,背熟 (P.39)
4. 一元函数微分学的概念与计算
4.1 知识结构
- ⭐ 导数的概念 / 微分的概念 (5分)
- ⭐⭐⭐ 导数与微分的计算 (5分 / 12分)
4.2 一元函数微分学的概念
4.2.1 导数的概念
- 每年出一道:f '(x0) = k ,某点斜率等于某点导数值
- da / db 叫 a 对 b 的(瞬时)变化率,题目往往会隐藏 瞬时 这两个字,但你要知道
- ⭐⭐⭐ 导数定义:增量式,差值式
- ① y=f(x) 在 x0 处可导;
② y=f(x) 在 x0 处导数存在;
③ f '(x0) = A(A为有限数);这三种说法完全一样,无论说哪一种,都认为是 ③ - ⭐⭐⭐ 函数在一点处可导的充要条件是:左导数存在,右导数存在,且相等
- 连续时一点处不可导的典型情况:y=|x|(尖点),y=x1/3(无穷导数)
- 导数的几何意义,切线方程,法线方程(法线的斜率 = - 1 / 切线斜率)
- 高阶导数
练习:例 4.1,例 4.2,例 4.3,⭐⭐⭐ 例 4.4,⭐⭐⭐ 例 4.5,例 4.6(2023考研题)
4.2.2 微分的概念
- Δy= AΔx + o(Δx)
dy=AΔx =f’(x)Δx - Δx= Δx + o(Δx),其中 o(Δx) = 0
dx=Δx - dy= f’(x) dx
- 可微的判别:作极限 Δx->0,lim (Δy-AΔx) / Δx ,看其是否等于 0
- 可微的含义:对于增量而言,用简单的线性增量代替了形式复杂的增量,且产生的误差又可以粗略不计
- 可导必可微,可微必可导
练习:例 4.7,例 4.8
4.3 一元函数微分学的计算
4.3.1 四则运算
- 逆用,eg:f(x)f’(x),f’(x)g(x)-f(x)g’(x) 的辅助函数
- (u•v•w) ’ = u’•v•w + u•v’•w + u•v•w’ ,遇到因式超过三个的式子,一般不要直接求导,而要另谋他法
练习:⭐⭐⭐ 例 4.9
4.3.2 分段函数的导数
- ⭐ 分段函数求导方式
① 在分段点用导数定义求导,分别求左、右导数来依据是否相等判断间断点导数是否存在
② 非分段点用导数公式求导 - In|u(x)| 求导,视绝对值而不见
练习:例 4.10,例 4.11,⭐ 例 4.12
4.3.3 复合函数的导数与微分形式的不变性
- ⭐ 微分形式的不变性
- { f [g(x)] } ’ 与 f ‘ [g(x)] 的区别
练习:例 4.15,例 4.13,例 4.14
4.3.4 反函数的导数
- 设 y=y(x) 可导,且 f’(x) ≠ 0,=> f’(x) 必恒正或恒负 => f(x) 单调
- 重中之重:① 反函数的一阶导 = 原函数一阶导的倒数
② 反函数的二阶导 = - 原函数二阶导 ÷ (原函数一阶导)3 ,要求会推导
原函数的二阶导 = - 反函数二阶导 ÷ (反函数一阶导)3
练习:例 4.16,例 4.17
4.3.5 参数方程所确定的函数的导数
- 求导规则
- 参数方程求二阶导
练习:例 4.18
4.3.6 隐函数求导法
- 方法:方程两边同时对 x 求导
练习:例 4.19
4.3.7 对数求导法
- 对于多项相乘、相除、开方、乘方的式子,一般先取对数再求导。(必考内容)
练习:例 4.20
4.3.8 幂指函数求导法
- u(x)v(x)
- y=xx ,y=x1/x 的图像
练习:⭐ 例 4.21(背下来),⭐ 例 4.22(背下来)
4.3.9 ⭐⭐⭐ 高阶导数
4.3.9.1 归纳法
- 逐次求导,探索规律,得出通式
练习:例 4.23(要记),例 4.26
4.3.10 变限积分的求导公式
- 公式:P.62,必考公式,一定出题
5. 一元函数微分学的几何应用
5.1 知识结构
- 三点两性一线
- 求最值或取值范围(5分)
- 极值点,拐点 往往放一起考
- 极值,最值,单调性,凹凸性,拐点 (5分)
- 渐近线往往是一个单独的考题(5分)
- 含参数的方程根的讨论问题(5分 / 12分),注意一下,可能是今年考卷上重要考题
5.2 极值与最值得概念
- 极值定义:邻域,f(x) ≥ f(x0) 或 f(x) ≤ f(x0)
- 最值定义:定义域,f(x) ≥ f(x0) 或 f(x) ≤ f(x0)
- ⭐ 极值与最值的关系:极值点不一定是最值点,最值点不一定是极值点
- 图像: f(x) = 3x-x3
- ⭐⭐⭐ 区间内部的最值点必是极值点,考研中有大用处
- 间断点可以是极值点吗 ?(P.77)
如果在那一点有定义的话,可去,跳跃,无穷,振荡间断点都可以是极值点
5.3 单调性与极值的判别
- 单调性的判别,可导区间用导数的正负确定
- 一阶可导且一阶导数为 0,则为极值点
5.3.1 判别极值点的充分条件
- 第一充分条件:前提连续,一阶导数变号
- 第二充分条件:一阶导数等于 0,二阶导数不为 0(会证明)
- 第三充分条件:n 为偶数,前 n-1 阶导数都等于 0,n 阶导数不为 0
5.4 凹凸性与拐点的概念
- 凹凸性的定义
- 拐点的定义:①拐点处只需连续 ②凹凸不分先后 ③拐点在曲线上,写 (x0,f(x0))
5.5 凹凸性与拐点的判别
- 凹凸性的判别:二阶导数大于0为凹,二阶导数小于0为凸
- 二阶可导且二阶导数为 0,则为拐点
5.5.1 判别拐点的充分条件
- 第一充分条件:前提连续,二阶导数变号
- 第二充分条件:二阶导数等于 0,三阶导数不为 0
- 第三充分条件:n 为奇数,前 n-1 阶导数都等于 0(从 2 阶导数开始),n 阶导数不为0
练习:⭐ 例 5.2,例 5.3,例 5.4,⭐ 例 5.5,例 5.6,例 5.7
5.6 渐近线
-
铅垂渐近线:f(x) 在无定义点,定义区间的端点 的极限值趋于∞
-
水平渐近线:x->∞,lim y(x) 为常数
-
⭐ 斜渐近线:y=ax+b
x->∞:a=lim f(x) / x,b=lim [ f(x) - ax ] (注:a≠0) -
求渐近线判别顺序
1.先找函数的无定义点,定义区间的端点,判别在这点有无铅垂渐近线
2.看x->∞,y(x) 是不是常数
3.用 f(x) / x ,看它的极限值是不是非零常数,然后求 b
练习:例 5.8
5.7 最值或取值范围
- 闭区间上连续函数求最值
1.找驻点(即一阶导数为 0 的点),不可导点,端点
2.求值,比大小
练习:例 5.9
- 开区间上连续函数的最值或取值范围
1.找驻点(即一阶导数为 0 的点),不可导点,左右极限
2.求值,比大小
练习:例 5.10
5.8 作函数图形
- 画 f(x) 图像一般步骤
1.确定定义域,考察奇偶性
2.无定义点,一阶导数为 0 的点,一阶导数不存在的点,二阶导数为零的点,然后画表格
3.确定渐近线
4.作图
练习:例 5.11
6. 中值定理
差前4个视频
-
不脱帽,全戴帽
-
拉格朗日:(1) 见到 f 与 f 的关系
(2) 见到 f 与 f ’ 的关系 -
最常用 f(x) - f(x0) = f '(s) (x-x0) ,一个定点,一个动点
-
an 与 bn ,若 n>0 ,a>b,则 an > bn
若 n<0 ,a>b,则 an < bn -
柯西中值定理:一个具体,一个抽象(P.96)
-
泰勒公式:区间上,局部上 ( 区分度极高,一定要会!)
-
麦克劳林公式 (P.92)
-
⭐⭐⭐ 证明题重要转换
8. 一元函数积分学的概念与计算
-
不定积分存在定理
⭐⭐⭐ 连续函数必有原函数 ,它的证明考研里面考过,这里涉及5个知识点
含有第一类间断点和无穷间断点的函数在此区间无原函数,考研可能会考证明过程 -
⭐⭐⭐ 祖孙三代 ,证明过程
-
复合函数,外偶则偶,外奇看内
-
⭐在一个周期上的积分值与起点无关
-
导数介值定理
-
定积分存在前提,上下左右有界
-
⭐ 定积分精确定义,右,左,中 端点
-
⭐⭐⭐ 一定是倒着考
-
对于 n 项和的极限
1)先提 1 / n
2)若能凑成 f (i/n) ,则用定积分定义
3)若不能,则考虑夹逼准则 -
定积分存在定理
充分条件:1. 连续
2. 单调
⭐ 3. 有界,有限个间断点(可去,跳跃,有界振荡)
必要条件:定积分存在,函数必然是有界的。后面常用,可积函数必有界 -
定积分的性质,一共 6 条
⭐ 4. 积分的保号性,| 亡羊补牢 | ≤ 未 |雨绸| 缪 , -
变限积分的性质,一共 2 条
⭐ 1.最好把证明记一记
-
可导必然连续,连续必然可积,可积必然有界
视频 5 还有一点点
-
一般反常积分收敛,极限为 0
-
反常积分收敛不一定极限为 0 ,很有可能是未来的考题(P.115)
-
瑕点,奇点
-
定积分存在叫常义可积,反常积分存在叫广义可积
-
⭐ 敛散性判别,两个重要结论(P.139)
8.1 不定积分的计算
-
不定积分的积分法——凑微分法,换元法,分部积分法,有理函数积分法
-
基本积分公式,要熟稔于心(P.116)
8.1.1 凑微分法
例 8.9,例 8.10,例 8.15
8.1.2 换元法
-
√a2 - x2 ,√a2 + x2 ,√x2 - a2 (例 8.11,例 8.12,例 8.13)
-
√ax2 + bx + c
-
n√ax + b,√ax + b / cx + d,√aebx+ c,⭐⭐⭐ 令复杂= t
-
倒代换
-
√ ,ax,ex,lnx,arcsinx,arctanx ,令复杂= t
8.1.3 分部积分法
- 基本思想
- u,v 的选取,(例 8.17)
- 推广公式
8.1.4 有理函数积分法
-
定义
-
方法,注:实数域
-
分解原则
例 8.20,例 8.21
8.2 定积分的计算
-
牛顿-莱布尼茨公式:闭区间连续
牛顿-莱布尼茨公式推广:闭区间有限个间断点(振荡间断点) -
定积分的换元积分法,三换(例 8.31,涉及诱导公式)
定积分的分部积分法(例 8.36,⭐ 例 8.37) -
⭐ 偶倍,奇零(例 8.24,例 8.25,涉及积分的保号性)
⭐ 区间再现公式(⭐ 例 8.28,例 8.30) -
⭐⭐⭐⭐⭐⭐⭐ 点火公式(例 8.32)
-
⭐ 分部积分法常可制造递推关系
-
华里士公式应用(例 8.26,例 8.29)
8.3 变限积分的计算
- 例 8.38,例 8.39
8.4 反常积分的计算
-
含有瑕点的无界函数的反常积分(例 8.41)
-
无穷区间上的反常积分(例 8.43)
-
注:在收敛的条件下,通过换元,可能实现反常积分与定积分的相互转换,不必大惊小怪
9. 一元函数积分学的几何应用
-
复习三大体系下的图形
-
体积
1.y=y(x) 绕 x 轴一圈所围图形体积
2.y=y1(x) 与 y=y2(x) 绕 x 轴一圈所围图形体积,常考题
3.y=y(x) 绕 y 轴一圈所围图形体积
4.y=y1(x) 与 y=y2(x) 绕 y 轴一圈所围图形体积 -
平均值
y(x) 在 [a,b] 上的平均值(即平均高) -
⭐ 小结
11. 多元函数微分学
-
邻域,边界,区域,聚点 的概念
-
极限定义,按第一种来
-
连续
-
⭐⭐⭐ 偏导数
-
⭐⭐⭐ 可微,区分度很高
1)判别是否可微
2)在可微的条件下,写出全微分 -
偏导数的连续性