随笔


1. 高数预备知识

  • 反函数
    1)f [ f -1 (x) ] = x
    2)严单必有反

  • 复合函数,⭐ 掌握复合方法 (P.22 例1.4,有可能是第一问)
    1)广义化
    2)画图
    3)写答案

  • 函数四特性
    1)有界,指明区间
    2)单调性:求导,定义法(尤其是数列)
    3)⭐ 奇偶性,f(x)-f(-x),双曲正弦,双曲余弦(P.22),对称轴的变换
    4)周期性,一元积分学中有重要用途

  • ⭐ 7 个结论

  • 神秘的数字 0,1
    在这里插入图片描述

  • ⭐ 幂函数单调性研究(P.5)

  • 1)求 √u 的最值,千万不要拿 √u 去求导,直接求 u 的最值,再开根号
    2)⭐⭐⭐ 求 |u| 的最值,直接求 u2 的最值,再开根号(今年就要考这个)
    3)见到多项相乘相除开方乘方求最值,取对数
    4)见到 1 / u ,用 u

  • √x 和 x2 在 [0,1] 所围成面积 S=1/3

  • ⭐ y=ex , 极限把握好,常用面积 S=1

  • ln x 趋向正无穷和负无穷的速度是极慢的
    x->0+,lim xa lnx = 0 (a>0)
    在这里插入图片描述

  • ⭐ uv = e vlnu ,u >0

  • 幂指函数,考研最爱考的函数之一,xx 求极限和求导,一定要转成 e xlnx

  • 面积,得记住
    在这里插入图片描述
    在这里插入图片描述

  • 放缩,趋于 0 ,|sinx| < |x|

  • 三角函数特殊函数值(P.6)

  • ⭐ arcsin x + arccos x = π / 2 (-1 ≤ x ≤ 1)
    ⭐ arctan x + arccot x = π / 2 (-oo ≤ x ≤ +oo)

  • 证 f(x) = 常数 C
    1.求导 f '(x) = 0
    2.代入特殊值 f(x0) = C

  • xx ,x2x ,x3x 的图像
    在这里插入图片描述

  • 三个重要的分段函数
    ⭐⭐⭐ x-1 < [ x ] ≤ x

  • 图形变换
    左右平移:ln(x+1) ≤ x,x > -1
    上下平移:ex ≥ x+1
    sin2x 、2sinx

  • 在 x=0 的邻域中,|sinx| = sin|x|

  • ⭐极坐标系
    ⭐ 直角系观点画极坐标系下图像 r = r(θ)
    心形线(外摆线),三叶玫瑰线阿基米德螺线(求0 - 2π 所围面积 ),伯努利双纽线

  • 参数方程
    摆线(平摆线),考的频率极高,考研只取一拱
    星形线(内摆线)

  • ⭐ 等比数列,下图考的太多了
    在这里插入图片描述

  • ⭐⭐⭐ 裂项相消法
    在这里插入图片描述

  • 八个诱导公式,极为重要(P.17),换元法里用

  • 倍角公式半角公式(P.18)

  • 和差公式(P.18)

  • ⭐ 对数运算法则,对于多项相乘相除开方乘方,先取对数再求导,对数求导法
    eg:
    在这里插入图片描述

  • ln(1+1/x) = ln(x+1) - ln x

  • 连续不等式证明,往往考虑中值定理
    eg:
    在这里插入图片描述

  • 一元二次方程基础

  • 因式分解
    ⭐ 二项式定理
    在这里插入图片描述

  • 华里士公式(点火公式),必考无疑

  • ⭐⭐⭐ 常用不等式(P.20)
    在这里插入图片描述
    ⭐ √ab ≤ a+b/2 ,|ab| ≤ a2+b2 /2
    在这里插入图片描述


2. 数列极限

⭐⭐ 夹逼
⭐⭐⭐单调有界准则

  • 单独证明极限存在,三步曲
  • 已知某一极限,证另一极限,定义法
  • ⭐ 重要思路:欲证 an 趋于 0 ,转化为欲证 |an| 趋于 0 ,若使用夹逼准则,省一半力气

3. 函数极限与连续性

  • 邻域,开区间

  • ⭐ 函数极限定义 ,注:0 < |x-x0| ,防止 x 与 x0 重合

  • 极限存在充要条件

  • 等式脱帽法,误差是几阶要具体问题具体分析(2023年可能会考)

  • 泰勒公式(P.37)

  • 唯一性,4 个 ,⭐⭐⭐ [x] (2023可能会考)

  • 局部有界性

  • 局部保号性,可以考证明,有技巧

  • ⭐ 记号运算规则,即高阶无穷小的计算规则(P.39)

  • 泰勒展开原则
    1)A / B 型,上下同阶
    2)A - B 型,幂次最低

  • 海涅定理

  • 无穷小定义

  • 无穷小的比阶,5个(P.39)

  • 无穷小运算规则
    1)有限个无穷小的和是无穷小
    2)有限个无穷小的乘积是无穷小
    3)有界函数与无穷小的乘积是无穷小,主要考这个

  • 常用等价无穷小,背熟 (P.39)


4. 一元函数微分学的概念与计算

4.1 知识结构

4.2 一元函数微分学的概念

4.2.1 导数的概念

  • 每年出一道:f '(x0) = k ,某点斜率等于某点导数值
  • da / db 叫 a 对 b 的(瞬时)变化率,题目往往会隐藏 瞬时 这两个字,但你要知道
  • ⭐⭐⭐ 导数定义:增量式,差值式
  • ① y=f(x) 在 x0 处可导;
    ② y=f(x) 在 x0 处导数存在;
    ③ f '(x0) = A(A为有限数);这三种说法完全一样,无论说哪一种,都认为是 ③
  • ⭐⭐⭐ 函数在一点处可导的充要条件是:左导数存在,右导数存在,且相等
  • 连续时一点处不可导的典型情况:y=|x|(尖点),y=x1/3(无穷导数)
  • 导数的几何意义,切线方程,法线方程(法线的斜率 = - 1 / 切线斜率)
  • 高阶导数

练习:例 4.1,例 4.2,例 4.3,⭐⭐⭐ 例 4.4,⭐⭐⭐ 例 4.5例 4.6(2023考研题)

4.2.2 微分的概念

  • Δy= AΔx + o(Δx)
    dy=AΔx =f’(x)Δx
  • Δx= Δx + o(Δx),其中 o(Δx) = 0
    dx=Δx
  • dy= f’(x) dx
  • 可微的判别:作极限 Δx->0,lim (Δy-AΔx) / Δx ,看其是否等于 0
  • 可微的含义:对于增量而言,用简单的线性增量代替了形式复杂的增量,且产生的误差又可以粗略不计
    在这里插入图片描述
  • 可导必可微,可微必可导

练习:例 4.7,例 4.8

4.3 一元函数微分学的计算

4.3.1 四则运算

  • 逆用,eg:f(x)f’(x),f’(x)g(x)-f(x)g’(x) 的辅助函数
  • (u•v•w) ’ = u’•v•w + u•v’•w + u•v•w’ ,遇到因式超过三个的式子,一般不要直接求导,而要另谋他法

练习:⭐⭐⭐ 例 4.9

4.3.2 分段函数的导数

  • ⭐ 分段函数求导方式
    ① 在分段点用导数定义求导,分别求左、右导数来依据是否相等判断间断点导数是否存在
    ② 非分段点用导数公式求导
  • In|u(x)| 求导,视绝对值而不见

练习:例 4.10,例 4.11,⭐ 例 4.12

4.3.3 复合函数的导数与微分形式的不变性

  • ⭐ 微分形式的不变性
    在这里插入图片描述
  • { f [g(x)] } ’ 与 f ‘ [g(x)] 的区别

练习:例 4.15,例 4.13,例 4.14

4.3.4 反函数的导数

  • 设 y=y(x) 可导,且 f’(x) ≠ 0,=> f’(x) 必恒正或恒负 => f(x) 单调
  • 重中之重:① 反函数的一阶导 = 原函数一阶导的倒数
                      ② 反函数的二阶导 = - 原函数二阶导 ÷ (原函数一阶导)3 ,要求会推导
                          原函数的二阶导 = - 反函数二阶导 ÷ (反函数一阶导)3
    在这里插入图片描述

练习:例 4.16,例 4.17

4.3.5 参数方程所确定的函数的导数

  • 求导规则
  • 参数方程求二阶导

练习:例 4.18

4.3.6 隐函数求导法

  • 方法:方程两边同时对 x 求导

练习:例 4.19

4.3.7 对数求导法

  • 对于多项相乘、相除、开方、乘方的式子,一般先取对数再求导。(必考内容)

练习:例 4.20

4.3.8 幂指函数求导法

  • u(x)v(x)
  • y=xx ,y=x1/x 的图像

练习:⭐ 例 4.21(背下来),⭐ 例 4.22(背下来)

4.3.9 ⭐⭐⭐ 高阶导数

4.3.9.1 归纳法
  • 逐次求导,探索规律,得出通式

练习:例 4.23(要记),例 4.26

4.3.10 变限积分的求导公式

  • 公式:P.62,必考公式,一定出题

5. 一元函数微分学的几何应用

5.1 知识结构

  • 三点两性一线
  • 求最值或取值范围(5分)
  • 极值点,拐点 往往放一起考
  • 极值,最值,单调性,凹凸性,拐点 (5分)
  • 渐近线往往是一个单独的考题(5分)
  • 含参数的方程根的讨论问题(5分 / 12分),注意一下,可能是今年考卷上重要考题

5.2 极值与最值得概念

  • 极值定义:邻域,f(x) ≥ f(x0) 或 f(x) ≤ f(x0)
  • 最值定义:定义域,f(x) ≥ f(x0) 或 f(x) ≤ f(x0)
  • ⭐ 极值与最值的关系:极值点不一定是最值点,最值点不一定是极值点
  • 图像: f(x) = 3x-x3
  • ⭐⭐⭐ 部的值点值点,考研中有大用处
  • 间断点可以是极值点吗 ?(P.77)
    如果在那一点有定义的话,可去,跳跃,无穷,振荡间断点都可以是极值点

5.3 单调性与极值的判别

  • 单调性的判别,可导区间用导数的正负确定
  • 一阶可导且一阶导数为 0,则为极值点

5.3.1 判别极值点的充分条件

  1. 第一充分条件:前提连续一阶导数变号
  2. 第二充分条件:一阶导数等于 0,二阶导数不为 0(会证明)
  3. 第三充分条件:n 为偶数,前 n-1 阶导数都等于 0,n 阶导数不为 0

5.4 凹凸性与拐点的概念

  • 凹凸性的定义
  • 拐点的定义:①拐点处只需连续 ②凹凸不分先后 ③拐点在曲线上,写 (x0,f(x0))

5.5 凹凸性与拐点的判别

  • 凹凸性的判别:二阶导数大于0为凹,二阶导数小于0为凸
  • 二阶可导且二阶导数为 0,则为拐点

5.5.1 判别拐点的充分条件

  1. 第一充分条件:前提连续二阶导数变号
  2. 第二充分条件:二阶导数等于 0,三阶导数不为 0
  3. 第三充分条件:n 为奇数,前 n-1 阶导数都等于 0(从 2 阶导数开始),n 阶导数不为0

练习:⭐ 例 5.2,例 5.3,例 5.4,⭐ 例 5.5,例 5.6,例 5.7

5.6 渐近线

  • 铅垂渐近线:f(x) 在无定义点,定义区间的端点 的极限值趋于∞

  • 水平渐近线:x->∞,lim y(x) 为常数

  • ⭐ 斜渐近线:y=ax+b
    x->∞:a=lim f(x) / x,b=lim [ f(x) - ax ] (注:a≠0)

  • 求渐近线判别顺序
    1.先找函数的无定义点,定义区间的端点,判别在这点有无铅垂渐近线
    2.看x->∞,y(x) 是不是常数
    3.用 f(x) / x ,看它的极限值是不是非零常数,然后求 b

练习:例 5.8

5.7 最值或取值范围

  • 闭区间上连续函数求最值
    1.找驻点(即一阶导数为 0 的点),不可导点端点
    2.求值,比大小

练习:例 5.9

  • 开区间上连续函数的最值或取值范围
    1.找驻点(即一阶导数为 0 的点),不可导点左右极限
    2.求值,比大小

练习:例 5.10

5.8 作函数图形

  • 画 f(x) 图像一般步骤
    1.确定定义域,考察奇偶性
    2.无定义点,一阶导数为 0 的点,一阶导数不存在的点,二阶导数为零的点,然后画表格
    3.确定渐近线
    4.作图

练习:例 5.11


6. 中值定理

差前4个视频

  • 不脱帽,全戴帽

  • 拉格朗日:(1) 见到 f 与 f 的关系
                      (2) 见到 f 与 f ’ 的关系

  • 最常用 f(x) - f(x0) = f '(s) (x-x0) ,一个定点,一个动点

  • an 与 bn ,若 n>0 ,a>b,则 an > bn
                     若 n<0 ,a>b,则 an < bn

  • 柯西中值定理:一个具体,一个抽象(P.96)

  • 泰勒公式:区间上,局部上 ( 区分度极高,一定要会!)
    在这里插入图片描述

  • 麦克劳林公式 (P.92)
    在这里插入图片描述

  • ⭐⭐⭐ 证明题重要转换在这里插入图片描述


8. 一元函数积分学的概念与计算

  • 不定积分存在定理
    ⭐⭐⭐ 连续函数必有原函数 ,它的证明考研里面考过,这里涉及5个知识点
    含有第一类间断点和无穷间断点的函数在此区间无原函数,考研可能会考证明过程

  • ⭐⭐⭐ 祖孙三代 ,证明过程
    在这里插入图片描述

  • 复合函数,外偶则偶,外奇看内

  • ⭐在一个周期上的积分值与起点无关

  • 导数介值定理

  • 定积分存在前提,上下左右有界

  • ⭐ 定积分精确定义,右,左,中 端点

  • ⭐⭐⭐ 一定是倒着考
    在这里插入图片描述

  • 对于 n 项和的极限
    1)先提 1 / n
    2)若能凑成 f (i/n) ,则用定积分定义
    3)若不能,则考虑夹逼准则

  • 定积分存在定理
    充分条件:1. 连续
                      2. 单调
                ⭐ 3. 有界,有限个间断点(可去,跳跃,有界振荡)
    必要条件:定积分存在,函数必然是有界的。后面常用,可积函数必有界

  • 定积分的性质,一共 6 条
    ⭐ 4. 积分的保号性,| 亡羊补牢 | ≤ 未 |雨绸| 缪 ,

  • 变限积分的性质,一共 2 条
    ⭐ 1.最好把证明记一记
    在这里插入图片描述

  • 可导必然连续,连续必然可积,可积必然有界在这里插入图片描述

视频 5 还有一点点

  • 一般反常积分收敛,极限为 0

  • 反常积分收敛不一定极限为 0 ,很有可能是未来的考题(P.115)

  • 瑕点,奇点

  • 定积分存在叫常义可积,反常积分存在叫广义可积

  • ⭐ 敛散性判别,两个重要结论(P.139)

8.1 不定积分的计算

  • 不定积分的积分法——凑微分法,换元法,分部积分法,有理函数积分法

  • 基本积分公式,要熟稔于心(P.116)

8.1.1 凑微分法

例 8.9,例 8.10,例 8.15
在这里插入图片描述
在这里插入图片描述

8.1.2 换元法

  1. √a2 - x2 ,√a2 + x2 ,√x2 - a2 (例 8.11,例 8.12,例 8.13)

  2. √ax2 + bx + c

  3. n√ax + b,√ax + b / cx + d,√aebx+ c,⭐⭐⭐ 令复杂= t

  4. 倒代换

  5. √ ,ax,ex,lnx,arcsinx,arctanx ,令复杂= t

8.1.3 分部积分法

  • 基本思想
    在这里插入图片描述
  • u,v 的选取,(例 8.17)在这里插入图片描述
  • 推广公式
    在这里插入图片描述

8.1.4 有理函数积分法

  • 定义

  • 方法,注:实数域

  • 分解原则

例 8.20,例 8.21

8.2 定积分的计算

  • 牛顿-莱布尼茨公式:闭区间连续
    牛顿-莱布尼茨公式推广:闭区间有限个间断点(振荡间断点)

  • 定积分的换元积分法,三换(例 8.31,涉及诱导公式)
    定积分的分部积分法(例 8.36,⭐ 例 8.37)

  • ⭐ 偶倍,奇零(例 8.24,例 8.25,涉及积分的保号性)
    ⭐ 区间再现公式(⭐ 例 8.28,例 8.30)

  • ⭐⭐⭐⭐⭐⭐⭐ 点火公式(例 8.32)

  • ⭐ 分部积分法常可制造递推关系

  • 华里士公式应用(例 8.26,例 8.29)

8.3 变限积分的计算

  • 例 8.38,例 8.39

8.4 反常积分的计算

  • 含有瑕点的无界函数的反常积分(例 8.41)

  • 无穷区间上的反常积分(例 8.43)

  • 注:在收敛的条件下,通过换元,可能实现反常积分与定积分的相互转换,不必大惊小怪


9. 一元函数积分学的几何应用

  • 复习三大体系下的图形

  • 面积
    1.直角坐标系下,直接算
    2.参数下 (1)直接算,考的可能性少
             ⭐ (2)换元法
    3.极坐标下,直接算
    在这里插入图片描述

  • 体积
    1.y=y(x) 绕 x 轴一圈所围图形体积
    2.y=y1(x) 与 y=y2(x) 绕 x 轴一圈所围图形体积,常考题
    3.y=y(x) 绕 y 轴一圈所围图形体积
    4.y=y1(x) 与 y=y2(x) 绕 y 轴一圈所围图形体积

  • 平均值
    y(x) 在 [a,b] 上的平均值(即平均高)

  • ⭐ 小结
    在这里插入图片描述


11. 多元函数微分学

  • 邻域,边界,区域,聚点 的概念

  • 极限定义,按第一种来

  • 连续在这里插入图片描述

  • ⭐⭐⭐ 偏导数
    在这里插入图片描述

  • ⭐⭐⭐ 可微,区分度很高
    1)判别是否可微
    2)在可微的条件下,写出全微分

  • 偏导数的连续性

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

头疼小宇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值