【高等数学考研速成一元函数微积分的应用(第15讲)】

题型总结

本系列内容主要探究,考研中高等数学可能出现的各种题型的详解
一元微积分的应用这一部分,主要是一元微积分的一些推广定理以及公式,广泛应用在物理学以及几何面积体积的求解中,熟悉基本题型后难度不大,主要有以下几个经典题型。

1.抽水做功问题

在这里插入图片描述
将对于深度为x的dx分量的水抽到表面,首先,水的重量为pgA(x)dx,产生的位移为x,则该部分功为pgxA(x)dx,总功为从a到b的积分,则有求解公式

W = ρ g ∫ a b x A ( x ) d x W=\rho g\int^b_a{xA(x)}{\rm d}x W=ρgabxA(x)dx

2.水压力问题

在这里插入图片描述
求浸没在水底平板一侧的水压力,可知在水底x处,dx部分木板的大小为(f(x)-h(x))dx,而水产生的压强为pgx,则该部分压力为两者之乘积,而总压力为a到b部分的积分,则有求解公式
P = ρ g ∫ a b x ( f ( x ) − h ( x ) ) d x P=\rho g\int^b_a{x(f(x)-h(x))}{\rm d}x P=ρgabx(f(x)h(x))dx

3.形心坐标问题

在这里插入图片描述
形心问题直接使用形心坐标公式:
( x 0 , y 0 ) (x_0,y_0) (x0,y0)
x 0 = ∫ ∫ D x d σ ∫ ∫ D d σ x_0={\int\int_D xd\sigma\over\int\int_Dd\sigma} x0=DdσDxdσ
y 0 = ∫ ∫ D y d σ ∫ ∫ D d σ y_0={\int\int_D yd\sigma\over\int\int_Dd\sigma} y0=DdσDydσ

4.曲线长度问题

分为三种情况去求解
一是普通的直接坐标系方程形式y=y(x)给出的
s = ∫ a b 1 + [ y ′ ( x ) ] 2 d x s=\int_a^b \sqrt{1+[y'(x)]^2}dx s=ab1+[y(x)]2 dx
二是由参数方程x=x(t),y=y(t)形式给出的
s = ∫ a b [ x ′ ( t ) ] 2 + [ y ′ ( t ) ] 2 d t s=\int_a^b \sqrt{[x'(t)]^2+[y'(t)]^2}dt s=ab[x(t)]2+[y(t)]2 dt
三是由极坐标方程r=r(ß)(a≤ß≤b)给出的
s = ∫ a b [ r ( ß ) ] 2 + [ r ′ ( ß ) ] 2 d ß s=\int_a^b \sqrt{[r(ß)]^2+[r'(ß)]^2}dß s=ab[r(ß)]2+[r(ß)]2 dß

5.旋转曲面表面积问题

分为两种情况去求
一是普通的直接坐标系方程形式y=y(x)给出的
s = 2 π ∫ a b ∣ y ( x ) ∣ 1 + [ y ′ ( x ) ] 2 d x s=2π\int_a^b |y(x)|\sqrt{1+[y'(x)]^2}dx s=2πaby(x)1+[y(x)]2 dx
二是由参数方程x=x(t),y=y(t)形式给出的
s = 2 π ∫ a b ∣ y ( t ) ∣ [ x ′ ( t ) ] 2 + [ y ′ ( t ) ] 2 d t s=2π\int_a^b |y(t)| \sqrt{[x'(t)]^2+[y'(t)]^2}dt s=2πaby(t)[x(t)]2+[y(t)]2 dt

6.曲率公式问题

所谓曲率,指得是曲线弯曲的角度关于长度的变化率。
直接背住曲率公式即可:
k = ∣ y ′ ′ ∣ [ 1 + ( y ′ ) 2 ] 3 2 k={|y''|\over[1+(y')^2]^{3\over 2}} k=[1+(y)2]23y′′
R = 1 k R={1\over k} R=k1

7.欧拉方程问题

x 2 d 2 y d x 2 + p x d y d x + q y = f ( x ) x^2{d^2y\over dx^2}+px{dy\over dx}+qy=f(x) x2dx2d2y+pxdxdy+qy=f(x)
上面这种形式的就为欧拉方程,我们先联想,这和我们前面学过的常微分方程中的二阶常系数方程有点像,那么思路就是将其转换成二阶常系数方程
当 x > 0 , 令 x = e t ,进行换元,可以得到 y 关于 t 的二阶常系数方程 当x>0,令x=e^t,进行换元,可以得到y关于t的二阶常系数方程 x>0,x=et,进行换元,可以得到y关于t的二阶常系数方程
当 x < 0 , 令 x = − e t ,进行换元,可以得到 y 关于 t 的二阶常系数方程 当x<0,令x=-e^t,进行换元,可以得到y关于t的二阶常系数方程 x<0,x=et,进行换元,可以得到y关于t的二阶常系数方程
然后根据二阶常系数方程的方法来解题,最后把元换回去即可

8.总结

一元微积分的应用这一部分,主要是一元微积分的一些推广定理以及公式,广泛应用在物理学以及几何面积体积的求解中,熟悉基本题型后难度不大,同样考的是前面的基本功,学好前面的内容,背住一些推论公式,基本就好了。
————插图来自张宇18讲。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值