题型总结
本系列内容主要探究,考研中高等数学可能出现的各种题型的详解
一元微积分的应用这一部分,主要是一元微积分的一些推广定理以及公式,广泛应用在物理学以及几何面积体积的求解中,熟悉基本题型后难度不大,主要有以下几个经典题型。
1.抽水做功问题
将对于深度为x的dx分量的水抽到表面,首先,水的重量为pgA(x)dx,产生的位移为x,则该部分功为pgxA(x)dx,总功为从a到b的积分,则有求解公式
W = ρ g ∫ a b x A ( x ) d x W=\rho g\int^b_a{xA(x)}{\rm d}x W=ρg∫abxA(x)dx
2.水压力问题
求浸没在水底平板一侧的水压力,可知在水底x处,dx部分木板的大小为(f(x)-h(x))dx,而水产生的压强为pgx,则该部分压力为两者之乘积,而总压力为a到b部分的积分,则有求解公式
P
=
ρ
g
∫
a
b
x
(
f
(
x
)
−
h
(
x
)
)
d
x
P=\rho g\int^b_a{x(f(x)-h(x))}{\rm d}x
P=ρg∫abx(f(x)−h(x))dx
3.形心坐标问题
形心问题直接使用形心坐标公式:
(
x
0
,
y
0
)
(x_0,y_0)
(x0,y0)
x
0
=
∫
∫
D
x
d
σ
∫
∫
D
d
σ
x_0={\int\int_D xd\sigma\over\int\int_Dd\sigma}
x0=∫∫Ddσ∫∫Dxdσ
y
0
=
∫
∫
D
y
d
σ
∫
∫
D
d
σ
y_0={\int\int_D yd\sigma\over\int\int_Dd\sigma}
y0=∫∫Ddσ∫∫Dydσ
4.曲线长度问题
分为三种情况去求解
一是普通的直接坐标系方程形式y=y(x)给出的
s
=
∫
a
b
1
+
[
y
′
(
x
)
]
2
d
x
s=\int_a^b \sqrt{1+[y'(x)]^2}dx
s=∫ab1+[y′(x)]2dx
二是由参数方程x=x(t),y=y(t)形式给出的
s
=
∫
a
b
[
x
′
(
t
)
]
2
+
[
y
′
(
t
)
]
2
d
t
s=\int_a^b \sqrt{[x'(t)]^2+[y'(t)]^2}dt
s=∫ab[x′(t)]2+[y′(t)]2dt
三是由极坐标方程r=r(ß)(a≤ß≤b)给出的
s
=
∫
a
b
[
r
(
ß
)
]
2
+
[
r
′
(
ß
)
]
2
d
ß
s=\int_a^b \sqrt{[r(ß)]^2+[r'(ß)]^2}dß
s=∫ab[r(ß)]2+[r′(ß)]2dß
5.旋转曲面表面积问题
分为两种情况去求
一是普通的直接坐标系方程形式y=y(x)给出的
s
=
2
π
∫
a
b
∣
y
(
x
)
∣
1
+
[
y
′
(
x
)
]
2
d
x
s=2π\int_a^b |y(x)|\sqrt{1+[y'(x)]^2}dx
s=2π∫ab∣y(x)∣1+[y′(x)]2dx
二是由参数方程x=x(t),y=y(t)形式给出的
s
=
2
π
∫
a
b
∣
y
(
t
)
∣
[
x
′
(
t
)
]
2
+
[
y
′
(
t
)
]
2
d
t
s=2π\int_a^b |y(t)| \sqrt{[x'(t)]^2+[y'(t)]^2}dt
s=2π∫ab∣y(t)∣[x′(t)]2+[y′(t)]2dt
6.曲率公式问题
所谓曲率,指得是曲线弯曲的角度关于长度的变化率。
直接背住曲率公式即可:
k
=
∣
y
′
′
∣
[
1
+
(
y
′
)
2
]
3
2
k={|y''|\over[1+(y')^2]^{3\over 2}}
k=[1+(y′)2]23∣y′′∣
R
=
1
k
R={1\over k}
R=k1
7.欧拉方程问题
x
2
d
2
y
d
x
2
+
p
x
d
y
d
x
+
q
y
=
f
(
x
)
x^2{d^2y\over dx^2}+px{dy\over dx}+qy=f(x)
x2dx2d2y+pxdxdy+qy=f(x)
上面这种形式的就为欧拉方程,我们先联想,这和我们前面学过的常微分方程中的二阶常系数方程有点像,那么思路就是将其转换成二阶常系数方程
当
x
>
0
,
令
x
=
e
t
,进行换元,可以得到
y
关于
t
的二阶常系数方程
当x>0,令x=e^t,进行换元,可以得到y关于t的二阶常系数方程
当x>0,令x=et,进行换元,可以得到y关于t的二阶常系数方程
当
x
<
0
,
令
x
=
−
e
t
,进行换元,可以得到
y
关于
t
的二阶常系数方程
当x<0,令x=-e^t,进行换元,可以得到y关于t的二阶常系数方程
当x<0,令x=−et,进行换元,可以得到y关于t的二阶常系数方程
然后根据二阶常系数方程的方法来解题,最后把元换回去即可
8.总结
一元微积分的应用这一部分,主要是一元微积分的一些推广定理以及公式,广泛应用在物理学以及几何面积体积的求解中,熟悉基本题型后难度不大,同样考的是前面的基本功,学好前面的内容,背住一些推论公式,基本就好了。
————插图来自张宇18讲。