2023.3.5-TensorFlow学习

tf.placehoder函数

Tensorflow中的palceholder,中文翻译为占位符

在代码层面,每一个tensor值在graph上都是一个op,当我们将train数据分成一个个minibatch然后传入网络进行训练时,每一个minibatch都将是一个op,这样的话,一副graph上的op未免太多,也会产生巨大的开销;于是就有了tf.placeholder(),我们每次可以将 一个minibatch传入到x = tf.placeholder(tf.float32,[None,32])上,下一次传入的x都替换掉上一次传入的x,这样就对于所有传入的minibatch x就只会产生一个op,不会产生其他多余的op,进而减少了graph的开销。

原文链接:https://blog.csdn.net/hgnuxc_1993/article/details/118164675

在使用tensorflow2.0版本时,出现RuntimeError:tf.placeholder() is not compatible with eager execution.的问题

两种解决办法:

一、

在import tensorflow as tf 后加上

tf.compat.v1.disable_eager_execution()

关闭紧急执行,这种情况会导致v2版本中的一些更新的行为,不能使用

二、

ImportError: DLL load failed: 页面文件太小,无法完成操作

解决办法:参考链接

conv2d_v2() got an unexpected keyword argument ‘filter’

解决办法:把filter改成filters

padding参数为SAME和VALID的区别

padding=valid表示without padding,padding=same表示with zero padding

   inputs:         1  2  3  4  5  6  7  8  9  10 11 (12 13)
                  |________________|                dropped
                                 |_________________|
               pad|                                      |pad
   inputs:      0 |1  2  3  4  5  6  7  8  9  10 11 12 13|0  0
               |________________|
                              |_________________|
                                             |________________|

(1)如果参数是‘’SAME’’,那么计算只与步长有关,直接除以步长 W / S(除不尽,向上取整)

(2)如果参数是‘VALID’,那么计算公式如上:(W – F + 1) / S (结果向上取整)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值