使用R语言进行房价预测:数据处理、特征工程与模型建立

本文详细介绍了如何使用R语言进行房价预测,包括数据预处理、特征工程、模型训练(如线性回归)和评估(RMSE、MAE和R-squared),以及数据集手动划分的方法。
摘要由CSDN通过智能技术生成

在房地产市场中,准确地预测房价对于买家、卖家和投资者都是至关重要的。本文将介绍如何使用R语言进行房价预测,覆盖了数据准备、特征工程、模型选择和评估等步骤。

数据集:

我们这里选取了划分好的数据集。train_data.csv和test_data.csv

在这里插入图片描述
数据格式如上,我们这里划分好了数据集接下来将介绍只有一个数据集,手动划分

手动划分数据集
**如果只有一个数据集,假设名称为data.csv,使用r语言划分训练数据集和测试数据集

方法一:使用caret包

# 安装并加载caret包
install.packages("caret")
library(caret)

# 读取数据集
data <- read.csv("data.csv")

# 将字符串列转换为因子型(假设字符串列名为"category_column")
data$category_column <- as.factor(data$category_column)

# 设置随机种子以保证结果可重现
set.seed(123)

# 使用createDataPartition函数划分数据集
index <- createDataPartition(y = data$target_column, p = 0.7, list = FALSE)
train_data <- data[index, ]
test_data <- data[-index, ]

方法2:使用caTools包划分数据集:

# 安装并加载caTools包
install.packages("caTools")
library(caTools)

# 读取数据集
data <- read.csv("data.csv")

# 将字符串列转换为因子型(假设字符串列名为"category_column")
data$category_column <- as.factor(data$category_column)

# 设置随机种子以保证结果可重现
set.seed(123)

# 使用sample.split函数划分数据集
split <- sample.split(data$target_column, SplitRatio = 0.7)
train_data <- subset(data, split == TRUE)
test_data <- subset(data, split == FALSE)

1. 数据准备

解下来,我们首先要做的是获取数据并进行初步的探索性分析。我们将使用train_data.csv和test_data.csv作为训练集和测试集数据。

# 读取数据
train_data <- read.csv("train_data.csv")
test_data <- read.csv("test_data.csv")

# 简单的数据探索性分析
str(train_data)
summary(train_data)

2. 数据清洗和特征工程

在数据准备阶段,我们需要对数据进行清洗、处理缺失值,并进行特征工程以提取有用的特征。

# 数据清洗和特征工程
# 假设删除缺失值较多的列和使用所有数值型特征
train_data <- na.omit(train_data)
test_data <- na.omit(test_data)

features <- c("LotFrontage", "LotArea", "OverallQual", "OverallCond", ...) # 列出其他特征
train_features <- train_data[, features]
test_features <- test_data[, features]

# 数据标准化
train_features_scaled <- scale(train_features)
test_features_scaled <- scale(test_features)

3. 模型选择与训练

在选择模型方面,我们尝试使用线性回归模型进行房价预测。

# 模型选择与训练
model <- lm(SalePrice ~ ., data = train_data)

4. 模型评估与精度计算

通过模型进行预测,并计算模型的精度指标,均方根误差(RMSE)、平均绝对误差(MAE)和决定系数(R-squared)。

# 模型评估与精度计算
predictions <- predict(model, newdata = test_data)

# 计算精度指标
rmse <- sqrt(mean((predictions - test_data$SalePrice)^2))
mae <- mean(abs(predictions - test_data$SalePrice))
rsquared <- 1 - sum((test_data$SalePrice - predictions)^2) / sum((test_data$SalePrice - mean(test_data$SalePrice))^2)

print(paste("RMSE:", rmse))
print(paste("MAE:", mae))
print(paste("R-squared:", rsquared))

5. 结果可视化

# 可视化结果
# 散点图:真实值 vs 预测值
plot(test_data$SalePrice, predictions, main = "True vs Predicted Prices", xlab = "True Prices", ylab = "Predicted Prices", col = "blue", pch = 19)
abline(0, 1, col = "red") # 添加对角线表示完美预测的情况

# 预测误差直方图
errors <- predictions - test_data$SalePrice
hist(errors, breaks = 30, col = "lightblue", main = "Prediction Errors", xlab = "Errors")

结论

在这里简要介绍了使用R语言进行房价预测的流程。通过数据处理、特征工程、模型建立和评估等步骤,可以建立并评估一个基本的房价预测模型。当然,在实际应用中,可能需要更多的特征工程和模型优化来提高预测的准确性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值