关于二分查找算法的一个思考
public static int search(int[] nums, int target) {
int left=0;
int right=nums.length-1;
while(left<=right){
int mid = left+ (right-left)/2;
if(nums[mid]==target){
right=mid-1;
}else if(nums[mid]<target){
left=mid+1;
}else if(nums[mid]>target){
right=mid-1;
}
}
if(left<0 || left>nums.length-1) return -1;
if(nums[left]==target) return left;
else return -1;
}
这是一个二分搜索的算法,不过是查找数组中目标值的左边界(第一个出现的位置),其它几块都比较好理解,但是if(nums[mid]==target) right=mid-1;中right赋值为mid-1存在疑虑。
这段代码,表明已经查找到了目标值,由于我们是要查找目标值第一个出现的位置,所以自然要去收缩右边界,但是按正常想法,right=mid-1,会导致right边界收缩,从而我们查找的范围中没有nums[mid]这个元素,比如nums=[2,3,4,5,7],target=4,当我们查找到4这个元素的时候,右边界收缩,此时查找范围是0-2,那不是4就被过滤出去了,但是如果改成right=mid,会导致left虽然找到了这个值,但是left=right,从而卡死在循环里,所以这就是为什么必须要right=mid-1的缘故,其次right=mid-1为什么也能得到正确的结果,那是因为while的循环条件是left<=right,当left=right+1时候,也就不满足循环条件了,所以当我们right赋值为mid-1的时候,虽然已经把target排除在了查找范围之内,但是由于剩下的元素均小于target,所以只会导致left左边界发生收缩,而右边界right不收缩,从而最终left收缩到right+1,而不满足循环条件,结束循环,而此时right+1结果刚好就是target元素的序号。