连续时间系统分析可以用时域的方法也可以用变换域的方法。
时域的方法物理意义更加明确,但是计算量会更大,但是变换域的方法计算量较小,但是物理意义却不是那么容易看出来的,所以从时域去研究一个系统,信号还是很有意义的。
对于连续时间的系统,我们通常用微分方程去对这个系统建模,表征这个系统,为什么采用微分方程呢,其实很好理解,常见的系统,都是输入与输出的关系,如果是简单输入与输出的关系,比如y=kx,y=kx^2等,我们很容易就可以用这样的表达式表征出来,但是一些复杂的系统,是很难用这样表达式表征出来的,但是我们可以用输入与输出的各阶导数与微分来很好的表征这个复杂的系统。
首先我们从最简单的微分方程开始研究-常系数线性微分方程。
对于这样的微分方程的解,总可以写成齐次解(自由响应),特解(强迫响应)的形式,比如y=Aexp(at)+Bexp(bt),首先明确自由响应是系统本身的特性,所以任何激励,都符合这个式子,但是每一种激励都会确定不同的系数,而且我们把t=0时刻作为我们切入研究这个系统的时刻,所以我们就可以用响应r(t>0)的值代入方程,确定系数,但是往往t=0+,更加便于求解,而且题目一般会给定0-来求0+,所以我们多采用r(t=0+)的值来确定系数。
信号与系统--连续时间系统分析
最新推荐文章于 2024-09-15 14:13:21 发布
本文探讨了连续时间系统分析的两种方法:时域分析和变换域分析。时域分析物理意义明确但计算复杂,而变换域分析则计算简便但物理意义不直观。微分方程是描述连续时间系统的主要工具,特别是对于复杂系统。常系数线性微分方程的解可以分为齐次解和特解,其中自由响应和强迫响应是分析系统行为的关键。通过0+时刻的响应值可以确定系统参数。
摘要由CSDN通过智能技术生成