最短路径--迪杰斯特拉算法模板

在最短路径问题中,迪杰斯特拉算法是比较简单算法,在了解之前,先要了解邻接矩阵的定义.

在最短路径问题中,首要的就是要把题目所描述的图存进来,邻接矩阵就是用一个二维数组储存这个图.分别把两个节点作为横纵坐标,把长度储存在这个坐标点内.例如一段为,2,3,4,表示2,3两个点相连接的长度为4,所以用map[2][3]把4存起来,值得注意的是方向,因为是二维数组,如果2到3为4,那么map[2][3]=4,而3到2长度为5,那么map[3][2]=5.题目强调双向那么map[a][b]=map[b][a].

然后就是迪杰斯特拉算法的思想,抽象的讲,迪杰斯特拉算法就是用一个数组把从起点到每个点最短路径存起来,比如dist[i]就等于从起点到点i的距离.它会遍历所有点若干次,不断更新dist里面的值,直到到达目的地,我们画一个图看,举个例子.


Problem Description

某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。

现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。

Input

本题目包含多组数据,请处理到文件结束。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。

Output

对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.

Sample Input

3 3

0 1 1

0 2 3

1 2 1

0 2

3 1

0 1 1

1 2

Sample Output

2

-1

题目来自:杭电oj


首先我们针对第一组数据存图:

因为题目说是双向,所以就对称分布,对角线上那一条无意义,如果没有连通或者横纵坐标相等,都可以用一个很大的数代替.然后就是我的代码:

#include<iostream>
using namespace std;
#define inf 0x7FFFFFFF//定义一个正无穷量词
#define M 201
int Map[M][M],Dist[M],visit[M];
//map为邻接矩阵,存图;dist为到某点最短路径;visit为当前城市最短距离是否求出.
int main(){
	int m,n,a,b,dis,start,Min,next,targe;
	while(scanf("%d%d",&n,&m)==2){
	//输入两个数,n为城镇数,m为路数
		for(int i=0;i<n;i++){
			visit[i]=1;//标记初始化为1
			Dist[i]=inf;//
			for(int j=0;j<n;j++)Map[i][j]=inf;//初始化无穷大
		}
	while(m--){
		scanf("%d%d%d",&a,&b,&dis);
		Map[a][b]=min(Map[a][b],dis);
		Map[b][a]=Map[a][b];//存图
	}
	scanf("%d%d",&start,&targe);//输入起点终点
	Dist[start]=0;
	visit[start]=0;//标记
	while(start!=targe){//一直找到起点到终点
		Min=inf;
		for(int i=0;i<n;i++){//从起点向所以其他城镇出发
			if(Map[start][i]!=inf)
				Dist[i]=min(Dist[i],Map[start][i]+Dist[start]);
				//如果已经连接,松弛操作,Dist表示已经存了的i最短路径
				//Map[start][i]+Dist[start]表示由此点出发到i的路径
			if(visit[i]!=0&&Dist[i]<Min){
			//已经求出到i最短路径,并且存在
				next=i;//存为下一个起点
				Min=Dist[i];//min为到该点最短路径
			}
		}
		if(Min==inf)break;//如果最短没有连接,跳过
		start=next;//定义这次终点为下一个起点
		visit[start]=0;//开始下一个循环找,并且标记
	}
	if(Dist[targe]==inf)printf("-1\n");
	else{
		printf("%d\n",Dist[targe]);
	}
}
}

如图的注释,不断更新dist数组值,保留此时的最小路,因为下一条路最短路要么是从这一条的最小路出发,或者直接到达这个点,直接到达则不更新,如果从上一条的最短继续前进,那么核心代码就是

Dist[i]=min(Dist[i],Map[start][i]+Dist[start]);

,这就是松弛操作,举个例子,我们从1到4要走20的路程,而从1到2再到4要走10,将两者比较,选择小的,这就是将dist更新的原理.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值