- 博客(15)
- 收藏
- 关注
原创 医学图像配准论文学习——基于深度学习的分割方法对腹部CT进行高效的两步多器官配准(2021);基于深度学习的检测在腹部CT图像上靶器官非刚性配准(2021);
三维(3D)腹部计算机断层扫描(CT)的配准对于计算机辅助疾病的诊断和治疗至关重要,但腹部的非刚性呼吸运动(non-rigid respiratory movements )增加了其难度。该文提出一种用于腹部CT扫描的两步多器官自动配准方法。首先,将轻量级挤压激励(squeeze-and-excitation ,SE)注意力块和基于全连接条件随机场(conditional random field,CRF)的后处理集成到基于全卷积网络(FCN)的模型中,对肝、肾、脾等腹部多器官获得更准确的分割结果;
2023-04-27 21:38:41 1612 1
原创 医学图像配准论文学习——基于相似性注意力的CNN,用于稳健的3D医学图像配准(2022
在这项研究中,我们提出了一种基于相似性注意力的卷积神经网络(CNN),用于准确和鲁棒的三维医学图像配准。我们首先引入一个基于相似性的局部注意力模型作为构建位移搜索空间的辅助模块,而不是基于原始数据的直接位移预测。该模型可以帮助网络关注具有高相似性的空间对应关系,而忽略具有低相似性的空间对应关系。然后将多尺度CNN与基于相似性的局部注意力集成,以提供非局部注意力,轻量级网络和从粗到细的配准。
2023-04-26 21:33:11 633 3
原创 医学图像配准论文学习——仰卧位至俯卧位结肠配准和基于最优传输的可视化(2019)
表面的配准和可视化在工程和医疗领域发挥着重要作用。特别是在虚拟结肠镜检查 (VC) 中,仰卧位和俯卧位计算机断层扫描 (CT) 之间的高效和稳健的配准方法是非常可取的,因为它有助于提高息肉检测率。然而,由于结肠形状的严重扭曲,仰卧位和俯卧位结肠配准仍然是一项具有挑战性的任务。在这项工作中,我们提出了一种新的使用最优质量传输(OMT)理论的仰卧位和俯卧位结肠扫描的配准和可视化框架。所提出的新方法能够将结肠表面参数化到平面矩形域上,以实现更好的配准和可视化。
2023-04-22 20:07:32 255
原创 医学图像分割论文学习:WORD:基于CT图像的腹部器官分割的大规模数据集,基准和临床应用研究(2022)
腹部器官分割是腹部疾病诊断、癌症治疗和放射治疗计划的基本和基本任务(Tang 等人,2019年)。准确的分割结果可以为临床诊断和随访提供有价值的信息,如器官大小、位置、边界状态、多个器官的空间关系等。此外,器官分割在临床治疗中起着至关重要的作用,尤其是在基于放射治疗的癌症和肿瘤治疗中(Chen 等人,2021b准确分割有风险的器官可以减轻对癌症区域附近健康器官的潜在影响。然而,在临床实践中,器官分割通常由放射肿瘤学家或放射科医生手动执行。它既耗时又容易出错,需要注释员。
2023-04-21 17:49:04 5033 10
原创 学习笔记:关于医学图像配准,以及腹部 CT、X线、MRI等图像的一些问题 持续更新
用腹部平片鉴别结肠炎的不同病因是不可能的;但请记住,溃疡性结肠炎只累及大肠,而Crohn和感染可能影响胃肠道的任何地方,缺血性肠病通常会影响一个特定的血管区(如肠系膜上动脉供应区或肠系膜下动脉供应区)。可以,大肠CT图像可以反映大肠的褶皱。CT图像可以显示大肠的褶皱,但是褶皱的形态和数量会因为肠道的扩张、收缩、肿瘤等因素而发生变化。Q2 肠壁炎症可能发生在肠道的任何地方,但最常见于大肠。大肠发炎称为结肠炎。Q1 大肠CT图像可以反映大肠的褶皱吗?腹部图像的复杂性:以下图片转载自掌。
2023-04-20 22:04:10 722 1
原创 医学图像配准论文学习——使用无监督深度学习对纵向腹盆腔CT图像进行3D可变形配准(2021)
虽然这是一篇21年的论文,略显遥远了。但目前来看,医学图像分析,尤其是配准和分割的部分,数据集还是集中在大脑、膝盖的部分,偶尔会有膝盖、肠道等位置。因为导师的要求-在大肠图像上搞研究,想看看在不同的数据上怎么做深度学习分析,希望触类旁通吧。自动移除CT台和体外结构,提高图像配准的性能。CT table是指患者进行扫描时的操作台。它是一种固定的结构,不随患者的姿势或生理状态而变化。因此,它可能会影响图像配准的效果,所以作者在配准之前先把它去掉了。
2023-04-19 15:12:19 544
原创 医学图像配准论文学习:解剖学约束和注意力引导的深层特征融合,用于关节分割和可变形医学图像配准(2023)
写了两周的期中作业,累计快有70页pdf了。再次表达一下某些同学(并不是我🐕)的观点:某C2高校的一些课程真的上的西巴碎,听课的人没几个,作业多的一批,还要集中在学期中交,而且据我观察大家(包括我)都是CSDN或者GITHUB上直接找个代码一贴,剩下的部分交给chatgpt。只能说在这种环境下保持科研热情真的难。唉,有同感的同学评论区见。提示:上面的内容不代表本人真实观点,以下是本篇文章正文内容。可变形图像配准的解剖学合理结果的主要目的是通过最小化一对固定图像和运动图像之间的差异来提高模型的配准精度。
2023-04-16 22:41:57 1225 4
原创 医学图像分割论文学习--利用深度学习和人脑医学成像进行多类疾病检测(2023)
医学成像和深度学习方法显著提高了肿瘤和缺血性中风等脑部疾病的早期检测,精度更高。机器学习方法,特别是基于神经网络的算法,在医学图像分析中取得了巨大的成功,用于各种任务,包括脑肿瘤和缺血性中风的检测、分割和分类。通常,这些模型一次解决一个问题,这被认为是人工弱智能(AWI)。有必要开发能够将研究推向强大的或人工通用人工智能(AGI)的方法,其中单个模型可以解决多个任务。在这项工作中,我们提出了基于卷积神经网络的集成模型来同时检测和分类两种脑部疾病,即肿瘤和缺血性中风。
2023-04-05 14:52:55 1317 1
原创 医学图像分割论文学习——深度学习方法在3DMRI影像中解开并分割小肠(2022)
无语住,导师要求必须在大肠图像上做文章。分割和配准都可以,目前没找到大肠配准的文章,看一篇小肠分割的吧。肠蠕动包括肠壁收缩,引起蠕动运动和肠内容物混合。小肠蠕动的偏差与多种功能性胃肠道疾病和疾病有关。对近端小肠的运动一般的检查方法是侵入式的,会给患者带来高负担。因此,使用非侵入式的cine-MRI图像进行诊断是非常必要的。但人工检查图像对医生来说颇耗时间,因此可以使用CNN网络自动化这项任务。在cine-MRI中量化肠蠕动的现有方法通常以2D cine-MRI为中心。
2023-04-02 19:40:30 600
原创 医学图像配准论文学习——用于医学图像逆一致微分同胚配准的对称金字塔网络(2023
在过去的几年里,基于深度学习的图像配准方法在医学图像分析中取得了显著的性能。然而,许多现有方法在无法在保持最终变形场的理想的微分性质和逆一致性的同时,确保准确配准。为了解决这个问题,本文提出了一种用于医学图像 逆一致微分同胚配准 的新型对称金字塔网络。tip: 逆一致配准指 正向配准结果的反变形场等于逆向配准结果,反向配准结果相同。逆一致性不等于可逆性,并且微分同胚算法默认不是逆一致性。为了到达逆一致性,方法应该是对称的,并且加如逆一致损失。逆一致性在分析细微解剖结构的变化中起着至关重要的作用。
2023-03-31 13:22:02 1386
原创 学习笔记:医学图像配准简介—附voxelmorph模型
配准的定义就不提了,这里主要说一下配准可以分为线性配准和非线性配准。线性配准包括刚体配准、仿射配准等,其中刚体配准是指只通过旋转和平移配准,而仿射配准则等于刚体配准+缩放。非线性配准,也就是论文里经常见到的可变形配准deformable registration,通常是说将移动图像的像素做位移,使得变形后的图像与目标图像的“差距”尽量小,当然差距这个词并不是很专业,下面会讲讲配准常见的损失函数。
2023-03-24 21:31:31 4946 5
原创 医学图像配准论文学习——cocycleReg:以Collaborative Cycle一致性方式制定图像配准和转变(2022)
多模态图像配准的最新进展依赖于图像到图像的转换()来实现良好的性能。但配准和转换的性能被它们并不优秀的互补正则化所限制。为此,我们提出了CoCycleReg,这是一种以Cycle一致性方式制定图像配准和转变的新方法。我们没有分为两个离散的阶段,而是在端到端训练过程中通过周期一致性统一图像配准和转换,以便每个部分都可以从另一个部分中受益。为了保证变形场在循环中的可逆性,我们引入了一种新型的双头配准网络,该网络由一个用于提取特征的单backbone和两个用于分别预测变形场的头组成。
2023-03-21 23:37:14 1523 3
原创 医疗图像配准论文学习——AMnet(2023)自适应多级配准网络(
本文提出一种自适应多级配准网络(AMNet),以保持变形场的连续性,实现三维脑MR图像的高性能配准。首先,设计一种具有自适应增长策略的轻量级配准网络,从多级小波子带中学习变形场,便于全局和局部优化,实现高性能配准;其次,我们的AMNet设计用于图像配准,根据一个区域的变形复杂程度调整其局部重要性,从而提高配准效率并保持变形场的连续性。
2023-03-16 21:33:21 2367 5
原创 医学图像配准论文学习——TransMorph,用于无监督医学图像配准的transformer(2022)
研一狗,开始发奋图强看论文,写(水)论文的路上。老师之前给布置的项目是根据几何信息进行图像配准,实在是太难了/(ㄒoㄒ)/~~。来参拜一下大佬的论文。一、abstract在医疗图像配准领域,之前有基于传统的几何方法(我导就是干这个的大牛,但现在安心在家带娃了),近几年深度学习的方式逐渐火热。当然在图像领域大放异彩的conv和transformer都被引入了配准中。conv中有unet++,而transformer中则是TransMorph效果最好(2022年发表在。
2023-03-12 20:32:52 6304 14
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人