棋盘挑战(八皇后)
给定一个 N×N 的棋盘,请你在上面放置 N 个棋子,要求满足:
- 每行每列都恰好有一个棋子
- 每条对角线上都最多只能有一个棋子
1 2 3 4 5 6
-------------------------
1 | | O | | | | |
-------------------------
2 | | | | O | | |
-------------------------
3 | | | | | | O |
-------------------------
4 | O | | | | | |
-------------------------
5 | | | O | | | |
-------------------------
6 | | | | | O | |
-------------------------
上图给出了当 N=6 时的一种解决方案,该方案可用序列 2 4 6 1 3 5
来描述,该序列按顺序给出了从第一行到第六行,每一行摆放的棋子所在的列的位置。
请你编写一个程序,给定一个 N×N 的棋盘以及 N 个棋子,请你找出所有满足上述条件的棋子放置方案。
输入格式
共一行,一个整数 N。
输出格式
共四行,前三行每行输出一个整数序列,用来描述一种可行放置方案,序列中的第 i 个数表示第 ii 行的棋子应该摆放的列的位置。
这三行描述的方案应该是整数序列字典序排在第一、第二、第三的方案。
第四行输出一个整数,表示可行放置方案的总数。
数据范围
6≤N≤13
输入样例:
6
输出样例:
2 4 6 1 3 5
3 6 2 5 1 4
4 1 5 2 6 3
4
题解
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 15;
int n;
bool col[N], dg[N * 2], udg[N * 2];
int path[N], ans;
void dfs(int x){
if (x > n){
ans ++;
if(ans <= 3){
for (int i = 1 ; i <= n ; i ++)
cout << path[i] << ' ';
cout << endl;
}
return;
}
for (int y = 1 ; y <= n ; y ++){
if (!col[y] && !dg[x + y] && !udg[x - y + n]){
col[y] = dg[x + y] = udg[x - y + n] = true;
path[x] = y;
dfs(x + 1);
//清空现场
col[y] = dg[x + y] = udg[x - y + n] = false;
path[x] = 0;
}
}
}
int main(){
cin >> n;
dfs(1);
cout << ans << endl;
return 0;
}
思路:
1.首先,它是用dfs一层一层搜索的,所以行数一定不相同
2.col
数组用来判断是不是同一列的,之前选过的列号标记为true
3.处理对角线,根据坐标系的知识可以知道,行数(也就是深度x)和列数(y)的关系是,x + y为定值,x - y也为定值(但是这里要注意,x-y可能是负值就数组越界了,所以代码中是用了+n的方法保证其为正值,只要同个对角线上的值相等就ok的!!)