DL_Base
文章平均质量分 68
深度学习基础
Miracle Fan
print("Hello World")------print("你好,世界")
展开
-
目标检测中常见的神经网络组成层------Pytorch
常见的物体检测算法常用卷积层、池化层、全连接层、激活函数层、Dropout层。原创 2022-12-30 22:30:15 · 652 阅读 · 0 评论 -
自定义神经网络入门-----Pytorch
对于iou,显而易见它的取值范围为[0,1],iou值越大,表示两个框重合的越好,也就是预测的越好。所以我们平时实际使用过程中,通常取某个阈值,当iou大于阈值,就认为其是一个有效的预测,反之,就属于一个无效预测。: 被正确地划分为正例的个数,即实际为正例且被分类器划分为正例的实例数(样本数);: 被错误地划分为正例的个数,即实际为负例但被分类器划分为正例的实例数;: 被正确地划分为负例的个数,即实际为负例且被分类器划分为负例的实例数。预测样本中预测正确数占所有样本的比例。原创 2022-12-29 15:51:46 · 989 阅读 · 0 评论 -
CNN--各层的介绍
卷积层Convolutional给定卷积核,将卷积核应用于输入图片特征的对应维度的地方,计算乘积,下图以步长stride=1为例,得到最终输出层特征。假设输入大小为(H,W),滤波器大小为(FH,FW),输出大小为(OH,OW),填充padding为P,步幅stride为SOH=H+2P−FHS+1OW=W+2P−FWS+1OH=\frac{H+2P-FH}{S}+1\\OW=\frac{W+2P-FW}{S}+1OH=SH+2P−FH+1OW=SW+2P−FW+1对于多通道卷积计算,原创 2022-07-30 11:40:48 · 694 阅读 · 0 评论 -
Pytorch实现Logistic回归
Pytorch实现Logistic回归1.导入相关apiimport torchimport torch.nn as nnimport numpy as npfrom sklearn import datasetsfrom sklearn.preprocessing import StandardScalerfrom sklearn.model_selection import train_test_split2.准备数据bc = datasets.load_breast_cancer(原创 2022-05-29 19:16:02 · 429 阅读 · 0 评论 -
Pytorch学习----从Tensor到LR
Pytorch学习—从Tensor到LR1.生成简单Tensorx=torch.empty(1)y=torch.rand(2,3)x,y(tensor([0.]), tensor([[0.0721, 0.6318, 0.4175], [0.3821, 0.0745, 0.0769]]))x=torch.ones(2,4,dtype=torch.float16)print(x)print(x.dtype)print(x.size())tensor([[1., 1.原创 2022-05-29 18:44:08 · 191 阅读 · 0 评论