(未完成,自用)初等数论重要定理&推论 ——学习笔记

初等数论及其应用 —— 笔记

符号表

mod ⁡ \operatorname{mod} mod —— 模

( a , b ) (a,b) (a,b) —— a , b a,b a,b 的最大公约数

[ a , b ] [a,b] [a,b] —— a , b a,b a,b 的最小公倍数

a ∣ b a \mid b ab —— a a a 整除 b b b

a ∤ b a \nmid b ab —— a a a 不整除 b b b

m o d \bf{mod} mod —— 计算机中的模运算

x ‾ \overline{x} x —— x x x p p p 的逆

同余

定义:
 设 m ∈ Z m \in Z mZ ,若 a , b ∈ Z a,b \in Z a,bZ,且 m ∣ ( a − b ) m \mid (a-b) m(ab) ,则称 a a a b b b m m m 同余

 若 a a a b b b m m m 同余,记作 a ≡ b   ( mod ⁡   m ) a \equiv b \ (\operatorname{mod}\ m) ab (mod m)

 若 m ∤ ( a − b ) m \nmid (a-b) m(ab) ,记作 a ≢ b   ( mod ⁡   m ) a \not\equiv b \ (\operatorname{mod}\ m) ab (mod m),并称 a a a m m m 不与 b b b 同余

 整数 m m m 称为 同余的模


基础mod运算

( i ) (i) (i) 自反性
a ≡ a   ( mod ⁡   m ) a \equiv a \ (\operatorname{mod}\ m) aa (mod m)

( i i ) (ii) (ii) 对称性
a ≡ b   ( mod ⁡   m ) , 则 b ≡ a   ( mod ⁡   m ) a \equiv b \ (\operatorname{mod}\ m),则 b \equiv a \ (\operatorname{mod}\ m) ab (mod m),ba (mod m)

( i i i ) (iii) (iii) 传递性
a ≡ b   ( mod ⁡   m ) , b ≡ c   ( mod ⁡   m ) , 则 a ≡ c   ( mod ⁡   m ) a \equiv b \ (\operatorname{mod}\ m), b \equiv c \ (\operatorname{mod}\ m),则 a \equiv c \ (\operatorname{mod}\ m) ab (mod m),bc (mod m),ac (mod m)


m m m 的完全剩余系

定义:
 一个模 m m m 完全剩余系是一个整数的集合,使得每个整数恰和此集合中的一个元素模 m m m 同余

 特别的,其中由 0 , 1 , 2 , 3 , . . . , m − 1 0,1,2,3,...,m - 1 0,1,2,3,...,m1 组成的集合被称为模 m m m 的最小非负剩余组成的完全剩余系


模运算

a ≡ b   ( mod ⁡   m ) a \equiv b\ (\operatorname{mod}\ m) ab (mod m)

   ( i ) (i) (i)   a + c ≡ b + c   ( mod ⁡   m ) \ a + c \equiv b + c\ (\operatorname{mod}\ m)  a+cb+c (mod m)

   ( i i ) (ii) (ii)   a − c ≡ b − c   ( mod ⁡   m ) \ a - c \equiv b - c\ (\operatorname{mod}\ m)  acbc (mod m)

   ( i i i ) (iii) (iii)   a c ≡ b c   ( mod ⁡   m ) \ ac \equiv bc\ (\operatorname{mod}\ m)  acbc (mod m)

   ( i i i i ) (iiii) (iiii) m > 0 , d = ( c , m ) m > 0 , d = (c,m) m>0,d=(c,m) a c ≡ b c   ( mod ⁡   m ) ac \equiv bc \ (\operatorname{mod}\ m) acbc (mod m) ,则 a ≡ b   ( mod ⁡ ⁡   m d ) a \equiv b \ (\operatorname{\operatorname{mod}}\ \frac{m}{d}) ab (mod dm)

推广至一般

a ≡ b   ( mod ⁡   m ) , c ≡ d   ( mod ⁡   m ) a \equiv b\ (\operatorname{mod}\ m),c \equiv d\ (\operatorname{mod}\ m) ab (mod m),cd (mod m)

   ( i ) (i) (i) a + c ≡ b + d   ( mod ⁡   m ) a + c \equiv b + d \ (\operatorname{mod}\ m) a+cb+d (mod m)

   ( i i ) (ii) (ii) a − c ≡ b − d   ( mod ⁡   m ) a - c \equiv b - d \ (\operatorname{mod}\ m) acbd (mod m)

   ( i i i ) (iii) (iii) a c ≡ b d   ( mod ⁡   m ) ac \equiv bd \ (\operatorname{mod}\ m) acbd (mod m)


引理 4.1 4.1 4.1

   m m m 个 模 m m m 不同余的整数构成的集合是一个模 m m m 的完全剩余系

  用鸽巢原理可证


定理 4.7 4.7 4.7

  若 r 1 , r 2 , . . . , r m r_1,r_2,...,r_m r1,r2,...,rm 是 模 m m m 的 完全剩余系且正整数 a a a 满足 ( a , m ) = 1 (a,m) = 1 (a,m)=1,与任意整数 b b b 构成集合 { a r 1 + b , a r 2 + b , . . . , a r m + b } \{ar_1 + b,ar_2 + b,...,ar_m + b\} {ar1+b,ar2+b,...,arm+b} 仍是模 m m m 的完全剩余系


定理 4.8 4.8 4.8

  若 a , b , k , m ∈ Z , k > 0 , m > 0 a,b,k,m \in Z , k > 0 , m > 0 a,b,k,mZ,k>0,m>0,且 a ≡ b   ( mod ⁡   m ) a \equiv b\ (\operatorname{mod}\ m) ab (mod m),则 a k ≡ b k   ( mod ⁡   m ) a ^ k \equiv b ^ k\ (\operatorname{mod}\ m) akbk (mod m)

证明:
  因为 a ≡ b   ( mod ⁡   m ) a \equiv b \ (\operatorname{mod}\ m) ab (mod m)

  则 m ∣ ( a − b ) m \mid (a - b) m(ab)

  又因为 a k − b k = ( a − b ) ∑ i = 0 k − 1 a k − 1 − i b i a^k - b ^ k = (a - b)\sum_{i = 0}^{k - 1}a^{k - 1 - i}b^i akbk=(ab)i=0k1ak1ibi

  所以 m ∣ ( a k − b k ) m \mid (a^k - b^k) m(akbk)

  故 a k ≡ b k   ( mod ⁡   m ) a ^ k \equiv b ^ k \ (\operatorname{mod}\ m) akbk (mod m)


定理 4.9 4.9 4.9

  若 a ≡ b   ( mod ⁡   m 1 ) , a ≡ b   ( mod ⁡   m 2 ) , . . . , a ≡ b   ( mod ⁡   m k ) a \equiv b\ (\operatorname{mod}\ m_1),a \equiv b\ (\operatorname{mod}\ m_2),...,a \equiv b\ (\operatorname{mod}\ m_k) ab (mod m1),ab (mod m2),...,ab (mod mk)

  则 a ≡ b   ( mod ⁡   [ m 1 , m 2 , . . . , m k ] ) a \equiv b\ (\operatorname{mod}\ [m_1,m_2,...,m_k]) ab (mod [m1,m2,...,mk])

 推论 4.9.1 4.9.1 4.9.1
  若在此基础上, m 1 , m 2 , . . . , m k m_1,m_2,...,m_k m1,m2,...,mk 两两互质

  则 a ≡ b   ( mod ⁡   m 1 m 2 . . . m k ) a \equiv b\ (\operatorname{mod}\ m_1m_2...m_k) ab (mod m1m2...mk)


线性同余方程

   设 x x x 为未知整数,求解一元同余方程
a x ≡ b   ( mod ⁡   m ) ax \equiv b\ (\operatorname{mod}\ m) axb (mod m)


定理 4.11 4.11 4.11

   设 a , b , m ∈ Z , m > 0   ,    ( a , m ) = d a,b,m \in Z,m > 0\ ,\ \ (a,m) = d a,b,mZ,m>0 ,  (a,m)=d

   若 d ∤ b d \nmid b db,则 a x ≡ b   ( mod ⁡   m ) ax \equiv b\ (\operatorname{mod}\ m) axb (mod m) 无解

   若 d ∣ b d \mid b db,则 a x ≡ b   ( mod ⁡   m ) ax \equiv b\ (\operatorname{mod}\ m) axb (mod m) 恰有 d d d 个模 m m m 不同余的解

 推论 4.11.1 4.11.1 4.11.1

   若整数 a a a m   ( m > 0 ) m\ (m > 0) m (m>0) 互素 且 b ∈ Z b \in Z bZ

   则 a x ≡ b   ( mod ⁡   m ) ax \equiv b\ (\operatorname{mod}\ m) axb (mod m) 有唯一解


模的逆

定义:
 对于 a x ≡ 1   ( mod ⁡   m ) ax\equiv 1\ (\operatorname{mod}\ m) ax1 (mod m) 的一个解称为 a a a m m m 的逆


定理 4.12 4.12 4.12

  设 p ∈ P , a ( a ∈ N ∗ ) p \in P,a(a\in N^*) pP,a(aN) 是其自身的逆

  当且仅当 $a \equiv 1\ (\operatorname{mod}\ p) $ 或 $a \equiv -1\ (\operatorname{mod}\ p) $


中国剩余定理

   设 m 1 , m 2 , . . . , m r ( m i ∈ N ∗ [ i = 0 , 1 , 2 , . . . , r ] ) m_1,m_2,...,m_r (m_i \in N^* [i = 0,1,2,...,r]) m1,m2,...,mr(miN[i=0,1,2,...,r]) 且两两互质
  则
{ x ≡ a 1   ( mod ⁡   m 1 ) x ≡ a 2   ( mod ⁡   m 2 ) . . . . . . x ≡ a r   ( mod ⁡   m r ) \begin{equation*} \begin{cases} x\equiv a_1\ (\operatorname{mod}\ m_1) \\ x\equiv a_2\ (\operatorname{mod}\ m_2) \\ ...... \\ x\equiv a_r\ (\operatorname{mod}\ m_r) \\ \end{cases} \end{equation*} xa1 (mod m1)xa2 (mod m2)......xar (mod mr)
  有模 M = ∏ i = 1 r m i M = \prod_{i = 1}^{r} m_i M=i=1rmi 的唯一解

证明:
  首先,构造出一个联立解

  令 M k = M m k M_k = \frac{M}{m_k} Mk=mkM

  因为 j ≠ k j \not = k j=k 时, ( m k , m j ) = 1 (m_k,m_j) = 1 (mk,mj)=1

  所以 ( m k , M k ) = 1 (m_k,M_k) = 1 (mk,Mk)=1

  故存在 y k y_k yk,使得 M k y k ≡ 1   ( mod ⁡   m k ) M_ky_k \equiv 1\ (\operatorname{mod}\ m_k) Mkyk1 (mod mk)

  对于 x x x

x = a 1 M 1 y 1 + a 2 M 2 y 2 + . . . + a r M r y r x = a_1M_1y_1 + a_2M_2y_2+...+a_rM_ry_r x=a1M1y1+a2M2y2+...+arMryr

  从而得到 x ≡ a k M k y k ≡ a k   ( mod ⁡   m k ) x \equiv a_kM_ky_k \equiv a_k\ (\operatorname{mod}\ m_k) xakMkykak (mod mk)

  对于 j ≠ k j \not = k j=k,因为 m k ∣ M j m_k\mid M_j mkMj

   所以 M j ≡ 0   ( mod ⁡   m k ) M_j \equiv 0\ (\operatorname{mod}\ m_k) Mj0 (mod mk)

   特解即为 x x x

  
  设 x 0 , x 1 x_0,x_1 x0,x1 为 方程组的两个联立解

  对于每个 k k k,都有 x 0 ≡ x 1 ≡ a k   ( mod ⁡   m k ) x_0 \equiv x_1 \equiv a_k\ (\operatorname{mod}\ m_k) x0x1ak (mod mk)

   所以 m k ∣ ( x 0 − x 1 ) m_k \mid (x_0 - x_1) mk(x0x1)

  由定理 4.9 4.9 4.9

   
M ∣ ( x 0 − x 1 ) , 即 x 0 ≡ x 1   ( mod ⁡   M ) M | (x_0 - x_1) , 即 x_0 \equiv x_1\ (\operatorname{mod}\ M) M(x0x1),x0x1 (mod M)

  所以,联立解模 M M M 唯一

Tip: 利用 中国剩余定理 可以快速求模特殊合数的一些场景

二进制中的特殊模性质

引理 4.2 4.2 4.2

   若 a , b ∈ N ∗ a,b \in N^* a,bN,则 ( 2 a − 1 )   mod   ( 2 b − 1 ) (2^a - 1)\ \textbf{mod}\ (2^b-1) (2a1) mod (2b1) 的 最小正剩余 为 ( 2 r − 1 ) (2^r - 1) (2r1);

   其中 r 为 a   mod   b a\ \textbf{mod} \ b a mod b 的最小正剩余


引理 4.3 4.3 4.3

   若 a , b ∈ N ∗ a,b \in N^* a,bN,则 ( 2 a − 1 , 2 b − 1 ) = 2 ( a , b ) − 1 (2^a-1,2^b-1) = 2^{(a,b)} - 1 (2a12b1)=2(a,b)1


定理 4.14 4.14 4.14

   正整数 ( 2 a − 1 , 2 b − 1 ) = 1 (2^a-1,2^b-1) = 1 (2a1,2b1)=1 ,当且仅当 ( a , b ) = 1 (a,b) = 1 (a,b)=1


多项式同余方程

定义:
  形如 f ( x ) ≡ 0   ( mod ⁡   m ) f(x) \equiv 0\ (\operatorname{mod}\ m) f(x)0 (mod m) 的方程
  其中 f ( x ) f(x) f(x) 是次数大于 1 1 1 的整系数多项式

例:
  求解 2 x 3 + 7 x − 4 ≡ 0   ( mod ⁡   200 ) 2x^3 + 7x - 4 \equiv 0\ (\operatorname{mod}\ 200) 2x3+7x40 (mod 200)


 由中国剩余定理 200 = 2 3 ⋅ 5 2 200 = 2^3 \cdot 5^2 200=2352

{ 2 x 3 + 7 x − 4 ≡ 0   ( mod ⁡   8 ) 2 x 3 + 7 x − 4 ≡ 0   ( mod ⁡   25 ) \begin{equation*} \begin{cases} 2x^3 + 7x - 4 \equiv 0\ (\operatorname{mod}\ 8) \\ 2x^3 + 7x - 4 \equiv 0\ (\operatorname{mod}\ 25) \end{cases} \end{equation*} {2x3+7x40 (mod 8)2x3+7x40 (mod 25)

 由后试探出
{ x ≡ 4   ( mod ⁡   8 ) x ≡ 16   ( mod ⁡   25 ) \begin{equation*} \begin{cases} x \equiv 4\ (\operatorname{mod}\ 8) \\ x \equiv 16\ (\operatorname{mod}\ 25) \end{cases} \end{equation*} {x4 (mod 8)x16 (mod 25)
 由中国剩余定理,合并得 x ≡ 116   ( mod ⁡   200 ) x\equiv 116\ (\operatorname{mod}\ 200) x116 (mod 200)


出现了一个问题:分解的数是质数的幂,可能依然非常大,遍历试探对于人来说还是不太行

我们迫切需要一个 一般方法

求解 f ( x ) ≡ 0   ( mod ⁡   m ) f(x) \equiv 0\ (\operatorname{mod}\ m) f(x)0 (mod m) 的一般方法.

由算数基本定理, m = ∏ p i k i m = \prod p_i^{k_i} m=piki

故关键在于 f ( x ) ≡ 0   ( mod ⁡   p k − 1 ) f(x) \equiv 0\ (\operatorname{mod}\ p^{k-1}) f(x)0 (mod pk1) 走向 f ( x ) ≡ 0   ( mod ⁡   p k ) f(x) \equiv 0\ (\operatorname{mod}\ p^k) f(x)0 (mod pk)

我们决定引入 导数

 定义:
   设 f ( x ) = ∑ i = 0 n a i x i − 1   ( a i ∈ R ) f(x) = \sum_{i = 0}^n a_ix^{i-1}\ (a_i\in R) f(x)=i=0naixi1 (aiR)

   则 f ( x ) f(x) f(x) 的导数 f ′ ( x ) = ∑ i = 1 n i a i x i − 1 f^{\prime}(x) = \sum_{i = 1}^n ia_ix^{i-1} f(x)=i=1niaixi1


引理 4.4 4.4 4.4

   若 f ( x ) , g ( x ) f(x),g(x) f(x),g(x) 为多项式

   则
( f + g ) ′ ( x ) = f ′ ( x ) + g ′ ( x ) ( c f ) ′ ( x ) = c ( f ′ ( x ) ) (f + g)^{\prime}(x) = f^{\prime}(x) + g^{\prime}(x) \\ (cf)^{\prime}(x) = c(f^{\prime}(x)) (f+g)(x)=f(x)+g(x)(cf)(x)=c(f(x))


引理 4.5 4.5 4.5

   若 m , k ∈ N ∗ m,k\in N^* m,kN f ( x ) = x m f(x) = x ^ m f(x)=xm

   则 f ( k ) ( x ) = [ ∏ i = 0 k − 1 ( m − i ) ] x m − k f^{(k)}(x) = [\prod_{i = 0}^{k-1}(m - i)] x^{m - k} f(k)(x)=[i=0k1(mi)]xmk


于是乎 亨泽尔定理 横空出世

定理 4.15 4.15 4.15亨泽尔定理

   设 f ( x ) f(x) f(x) 是 整系数多项式, k ∈ N ∗ k\in N^* kN k ≥ 2 k \geq 2 k2 p ∈ P p \in P pP

   进一步假设 r r r f ( x ) ≡ 0   ( mod ⁡   p k − 1 ) f(x) \equiv 0\ (\operatorname{mod}\ p^{k-1}) f(x)0 (mod pk1) 的解

     ( i ) (i) (i) f ′ ( r ) ≢ 0   ( mod ⁡   p k − 1 ) f^{\prime}(r) \not\equiv 0\ (\operatorname{mod}\ p^{k-1}) f(r)0 (mod pk1)

      则存在唯一 t   ( t ∈ Z ) , 0 ≤ t ≤ p t\ (t\in Z),0 \leq t \leq p t (tZ),0tp

      使得 f ( r + t p k − 1 ) ≡ 0   ( mod ⁡   p k ) f(r + tp^{k-1}) \equiv 0\ (\operatorname{mod}\ p^k) f(r+tpk1)0 (mod pk)

      t \large t t t ≡ − f ′ ( r ) ‾ f ( r ) p k − 1   ( mod ⁡   p ) \large t \equiv - \overline{f^{\prime}(r)} \frac{f(r)}{p^{k-1}}\ (\operatorname{mod}\ p) tf(r)pk1f(r) (mod p) 得出

    ( i i ) (ii) (ii) f ′ ( r ) ≡ 0   ( mod ⁡   p ) , f ( r ) ≡ 0 ( mod ⁡   p k ) f^{\prime}(r) \equiv 0\ (\operatorname{mod}\ p),f(r) \equiv 0 (\operatorname{mod}\ p^k) f(r)0 (mod p),f(r)0(mod pk)

      则对 t   ( t ∈ Z ) t\ (t\in Z) t (tZ) 都有 f ( r + t p k − 1 ) ≡ 0   ( mod ⁡   p k ) f(r + tp^{k-1}) \equiv 0\ (\operatorname{mod}\ p^k) f(r+tpk1)0 (mod pk)

     ( i i i ) (iii) (iii) f ′ ( r ) ≡ 0   ( mod ⁡   p ) , f ( r ) ≢ 0 ( mod ⁡   p k ) f^{\prime}(r) \equiv 0\ (\operatorname{mod}\ p),f(r) \not\equiv 0 (\operatorname{mod}\ p^k) f(r)0 (mod p),f(r)0(mod pk)

      则 f ( x ) ≡ 0   ( mod ⁡   p k ) f(x) \equiv 0\ (\operatorname{mod}\ p^k) f(x)0 (mod pk) 不存在解使得 x ≡ r   ( mod ⁡   p k − 1 ) x\equiv r\ (\operatorname{mod}\ p^{k-1}) xr (mod pk1)


为了证明 亨泽尔定理,引入 T a y l o r Taylor Taylor 展开

引理 4.6 4.6 4.6

   若 f ( x ) f(x) f(x) n n n 次多项式; a , b ∈ R a,b \in R a,bR

   则 f ( a + b ) = f ( a ) + f ′ ( a ) b + f ′ ′ ( a ) b 2 2 ! + . . . + f ( n ) ( a ) b n n ! \large f(a + b) = f(a) + f^{\prime}(a)b + \frac{f^{\prime\prime}(a)b^2}{2!} + ... + \frac{f^{(n)}(a)b^n}{n!} f(a+b)=f(a)+f(a)b+2!f′′(a)b2+...+n!f(n)(a)bn

   其中对于每一个 a a a,系数是关于 a a a 的整系数多项式

证明:
  每个 n n n 次多项式 f ( x ) f(x) f(x) 都是 x m x ^ m xm 的倍数的和

  其 m ≤ n m \leq n mn

  由引理 4.4 4.4 4.4,仅对多项式 f ( x ) = x m f(x) = x ^ m f(x)=xm 建立引理 4.6 4.6 4.6

  其中 m ∈ N ∗ m \in N^* mN


  由二项式定理
( a + b ) m = ∑ j = 0 m ( m j ) a m − j b j (a + b)^m = \sum_{j = 0}^m\dbinom{m}{j}a^{m - j}b^j (a+b)m=j=0m(jm)amjbj

  由引理 4.5 4.5 4.5
f m ( j ) ( a ) = ∏ i = 0 j − 1 ( m − i ) a m − j f^{(j)}_{m}(a) = \prod^{j-1}_{i = 0}(m-i)a^{m - j} fm(j)(a)=i=0j1(mi)amj

  因此
f m ( j ) ( a ) j ! = ( m j ) a m − j \frac{f^{(j)}_m(a)}{j!} = \dbinom{m}{j}a^{m-j} j!fm(j)(a)=(jm)amj

  证毕!


正式开始对 亨德尔定理 的证明

   若 r r r f ( r ) ≡ 0   ( mod ⁡   p k ) f(r) \equiv 0\ (\operatorname{mod}\ p^k) f(r)0 (mod pk) 的解

   则 其也为 f ( r ) ≡ 0   ( mod ⁡   p k − 1 ) f(r) \equiv 0\ (\operatorname{mod}\ p^{k-1}) f(r)0 (mod pk1) 的解

   因此 此命题 等于 r + t p k − 1 , t ∈ Z r + tp^{k-1},t \in Z r+tpk1,tZ,一旦确定了 t t t 的条件,证明完成

   由 引理 4.6 4.6 4.6
f ( r + t p k − 1 ) = ∑ i = 0 n f ( i ) ( r ) i ! ( t p k − 1 ) i f(r + tp^{k-1}) = \sum_{i = 0}^{n}\frac{f^{(i)}(r)}{i!}(tp^{k-1})^i f(r+tpk1)=i=0ni!f(i)(r)(tpk1)i

   其中 f ( k ) ( r ) k ! ∈ Z , k = 1 , 2 , 3 , . . . , n . \frac{f^{(k)}(r)}{k!} \in Z,k = 1,2,3,...,n. k!f(k)(r)Z,k=1,2,3,...,n.

   给定 k ≥ 2 k \geq 2 k2,对于 2 ≤ m ≤ n 2 \leq m \leq n 2mn,有 k ≤ m ( k − 1 ) k \leq m(k-1) km(k1) p k ∣ p m ( k − 1 ) p^k \mid p^{m(k-1)} pkpm(k1)

   因此
f ( r + t p k − 1 ) ≡ f ( r ) + f ′ ( r ) t p k − 1   ( mod ⁡   p k ) f(r + tp^{k-1}) \equiv f(r) + f^{\prime}(r)tp^{k-1}\ (\operatorname{mod}\ p ^ k) f(r+tpk1)f(r)+f(r)tpk1 (mod pk)

   因为 r + t p k − 1 r + tp^{k-1} r+tpk1 f ( r + t p k − 1 ) ≡ 0   ( mod ⁡   p k − 1 ) f(r + tp^{k-1}) \equiv 0\ (\operatorname{mod}\ p^{k-1}) f(r+tpk1)0 (mod pk1) 的一个解

    所以
f ′ ( r ) t p k − 1 ≡ − f ( r )   ( mod ⁡   p k ) f^{\prime}(r)tp^{k-1} \equiv -f(r)\ (\operatorname{mod}\ p^k) f(r)tpk1f(r) (mod pk)

   更进一步,由于 f ( r ) ≡ 0   ( mod ⁡   p k − 1 ) f(r) \equiv 0\ (\operatorname{mod}\ p^{k-1}) f(r)0 (mod pk1)

   因此,两边同除 p k − 1 p^{k-1} pk1

   得到
f ′ ( r ) t ≡ − f ( r ) p k − 1   ( mod ⁡   p ) f^{\prime}(r)t \equiv - \frac{f(r)}{p^{k-1}}\ (\operatorname{mod}\ p) f(r)tpk1f(r) (mod p)

   通过考察其模 p p p 的解,即可证明 ( i ) , ( i i ) , ( i i i ) (i),(ii),(iii) (i),(ii),(iii)


   情形 ( i ) (i) (i)

   设 f ′ ( r ) ≢ 0   ( mod ⁡   p ) f^{\prime}(r) \not\equiv 0\ (\operatorname{mod}\ p) f(r)0 (mod p),则 ( f ′ ( r ) , p ) = 1 (f^{\prime}(r),p) = 1 (f(r),p)=1,应用 推论 4.11.1 4.11.1 4.11.1

   可知 t t t 的线性同余方程有唯一解
t ≡ ( − f ( r ) p k − 1 ) f ′ ( r ) ‾   ( mod ⁡   p ) t \equiv (-\frac{f(r)}{p^{k-1}})\overline{f^{\prime}(r)}\ (\operatorname{mod}\ p) t(pk1f(r))f(r) (mod p)

   情形 ( i ) (i) (i) 得证!

   情形 ( i i ) (ii) (ii)

   $f^{\prime}® \equiv 0\ (\operatorname{mod}\ p) $ 时,有 ( f ′ ( r ) , p ) = p (f^{\prime}(r),p) = p (f(r),p)=p

   若 p ∣ f ( r ) p k − 1 p\mid \frac{f(r)}{p^{k-1}} ppk1f(r) (此关系成立时当且仅当 f ( r ) ≡ 0   ( mod ⁡   p k ) f(r)\equiv 0\ (\operatorname{mod}\ p^k) f(r)0 (mod pk)),则所有 t t t 都是解

   这说明 x = r + t p k − 1 x = r + tp^{k-1} x=r+tpk1 是解, t = 0 , 1 , . . . , p − 1 t = 0,1,...,p-1 t=0,1,...,p1

   情形 ( i i ) (ii) (ii) 得证!

   情形 ( i i i ) (iii) (iii)

   最后,考虑 f ′ ( r ) ≡ 0   ( mod ⁡   p ) f^{\prime}(r) \equiv 0\ (\operatorname{mod}\ p) f(r)0 (mod p),但 p ∤ f ( r ) p k − 1 p\nmid \frac{f(r)}{p^{k-1}} ppk1f(r) 的情形

   我们有 ( f ′ ( r ) , p ) = p (f^{\prime}(r),p) = p (f(r),p)=p f ( r ) ≡ 0   ( mod ⁡   p k ) f(r) \equiv 0\ (\operatorname{mod}\ p^k) f(r)0 (mod pk)

   所以 根据定理 4.11 4.11 4.11, t t t 的任意值均为解

   情形 ( i i i ) (iii) (iii) 得证!


推论 4.15.1 4.15.1 4.15.1

   假设 r r r 是 多项式同余方程 f ( x ) ≡ 0   ( mod ⁡   p ) f(x) \equiv 0\ (\operatorname{mod}\ p) f(x)0 (mod p) 的一个解,且 p ∈ P p \in P pP

   若 $ f^{\prime}® \not\equiv 0\ (\operatorname{mod}\ p) $,则存在模 p k p ^ k pk 的 唯一解 r k , k = 2 , 3 , . . . r_k,k = 2,3,... rk,k=2,3,...

   使得 r 1 = r r_1 = r r1=r r k = r k − 1 − f ( r k − 1 ) f ′ ( r ) ‾ r_k = r_{k-1} - f(r_{k-1})\overline{f^{\prime}(r)} rk=rk1f(rk1)f(r)

例题

    1. 求解 f ( x ) = x 3 + x 2 + 2 x + 26 ≡ 0   ( mod ⁡   343 ) f(x) = x^3 + x ^ 2 + 2x + 26 \equiv 0\ (\operatorname{mod}\ 343) f(x)=x3+x2+2x+260 (mod 343)

  解:  因为 343 = 7 3 343 = 7^3 343=73

    1 ◯ \textcircled{1} 1 通过试探,可得

x 3 + x 2 + 2 x + 26 ≡ 0   ( mod ⁡   7 ) x^3 + x^2 + 2x + 26 \equiv 0\ (\operatorname{mod}\ 7) x3+x2+2x+260 (mod 7)
    的解 是 x ≡ 2   ( mod ⁡   7 ) x \equiv 2\ (\operatorname{mod}\ 7) x2 (mod 7)

    2 ◯ \textcircled{2} 2 因为 f ′ ( x ) = 3 x 2 + 2 x + 2 f^{\prime}(x) = 3x^2 + 2x + 2 f(x)=3x2+2x+2

    所以 f ′ ( 2 ) = 18 ≢ 0   ( mod ⁡   7 ) → f^{\prime}(2) = 18 \not \equiv 0\ (\operatorname{mod}\ 7) \rightarrow f(2)=180 (mod 7) 有唯一解


    3 ◯ \textcircled{3} 3 使用推论 4.15.1 4.15.1 4.15.1

    注意到 f ′ ( 2 ) ‾ = 4 ‾ ≡ 2   ( mod ⁡   7 ) \overline{f^{\prime}(2)} = \overline{4} \equiv 2\ (\operatorname{mod}\ 7) f(2)=42 (mod 7)

   可得
r 2 = 2 − f ( 2 ) f ′ ( 2 ) ‾ = 2 − 42 ⋅ 2 = − 82 ≡ 16   ( mod ⁡   49 ) r 3 = 16 − f ( 16 ) f ′ ( 2 ) ‾ = 16 − 4410 ⋅ 2 = − 8804 ≡ 117   ( mod ⁡   343 ) r_2 = 2 - f(2) \overline{f^{\prime}(2)} = 2 - 42 \cdot 2 = -82\equiv 16\ (\operatorname{mod}\ 49) \\ r_3 = 16 - f(16)\overline{f^{\prime}(2)} = 16 - 4410 \cdot 2 = -8804 \equiv 117\ (\operatorname{mod}\ 343) r2=2f(2)f(2)=2422=8216 (mod 49)r3=16f(16)f(2)=1644102=8804117 (mod 343)

    得到 f ( x ) f(x) f(x) 343 343 343 的解为 x ≡ 114   ( mod ⁡   343 ) x \equiv 114\ (\operatorname{mod}\ 343) x114 (mod 343)

    2.求解 x 2 + x + 7 ≡ 0   ( mod ⁡   27 ) x^2 + x + 7 \equiv 0 \ (\operatorname{mod}\ 27) x2+x+70 (mod 27)

  解:  

   设 f ( x ) = x 2 + x + 7 f(x) = x ^ 2 + x + 7 f(x)=x2+x+7,试探出 f ( x ) ≡ 0   ( mod ⁡   3 ) f(x) \equiv 0\ (\operatorname{mod}\ 3) f(x)0 (mod 3) 的解为 x ≡ 1   ( mod ⁡   3 ) x \equiv 1\ (\operatorname{mod}\ 3) x1 (mod 3)

   由 f ′ ( x ) = 2 x + 1 f^{\prime}(x) = 2x + 1 f(x)=2x+1,可知 $f^{\prime}(1) = 3 \equiv 0\ (\operatorname{mod}\ 3) $

   且 因为 $f(1) = 9 \equiv 0\ (\operatorname{mod}\ 9) $

   所以由 ( i i ) (ii) (ii) 得,对于 t ∈ Z t \in Z tZ 1 + 3 t 1 + 3t 1+3t 都是模 9 9 9 的解

   因为 $f(1) = 9 \not \equiv 0\ (\operatorname{mod}\ 27) $,由 ( i i i ) (iii) (iii),故不存在 原式 ≡ 0   ( mod ⁡   27 ) 原式 \equiv 0\ (\operatorname{mod}\ 27) 原式0 (mod 27) x ≡ 1   ( mod ⁡   9 ) x \equiv 1\ (\operatorname{mod}\ 9) x1 (mod 9) 的解

   因为 f ( 4 ) = 27 ≡ 0   ( mod ⁡   27 ) f(4) = 27 \equiv 0\ (\operatorname{mod}\ 27) f(4)=270 (mod 27),由 ( i i ) (ii) (ii) ,对于 t ∈ Z t \in Z tZ 4 + 9 t 4 + 9t 4+9t 都是解


   最后,因 $f(7) = 63 \not \equiv 0\ (\operatorname{mod}\ 27) $,由 ( i i i ) (iii) (iii),无解

   综上, f ( x ) ≡ 0   ( mod ⁡   27 ) f(x) \equiv 0\ (\operatorname{mod}\ 27) f(x)0 (mod 27) 的解是 x ≡ 4 , 13 , 22   ( mod ⁡   27 ) x \equiv 4,13,22\ (\operatorname{mod}\ 27) x4,13,22 (mod 27)

利用波拉德 ρ \rho ρ 方法分解整数

   设 n n n 是一个大合数, p p p 是它的最小素因子,我们的目标是选取整数 x 0 , x 1 , … , x s x_0,x_1,\ldots,x_s x0,x1,,xs 使得它们有不同的模 n n n 最小非负剩余,但它们模 p p p 的最小非负剩余不是全部不同的,使用一些概率公式(书上没有详写)易证:

  在 s s s p \sqrt{p} p 相比较大,而与 n \sqrt{n} n 相比小且数字 x 1 , x 2 , … x s x_1,x_2,\ldots x_s x1,x2,xs 是随机选取时,这是有可能发生的

   一旦找到 x i x_i xi x j x_j xj 0 ≤ i ≤ j ≤ s 0\leq i \leq j \leq s 0ijs,满足 x i ≡ x j ( mod ⁡   p ) x_i \equiv x_j (\operatorname{mod}\ p) xixj(mod p) x i ≢ x j ( mod ⁡   n ) x_i \not \equiv x_j(\operatorname{mod}\ n) xixj(mod n),则 ( x i − x j , n ) (x_i - x_j,n) (xixj,n) n n n 的非平凡因子

  这是因为 p p p 整除 ( x i , x j ) (x_i,x_j) (xi,xj),但 n n n 不整除 ( x i − x j ) (x_i - x_j) (xixj),可以欧几里得算法迅速求出 ( x i − x j , n ) (x_i - x_j,n) (xixj,n),然而,对每对 ( i , j ) , 0 ≤ i < j ≤ s (i,j),0\leq i < j \leq s (i,j),0i<js,求 ( x i − x j , n ) (x_i - x_j,n) (xixj,n) 共需要求 O ( s 2 ) \mathcal{O}(s^2) O(s2) 个最大公因子


我们将说明如何减少使用必须使用欧几里得算法的次数
我们用下面的方法寻找这样的整数 x i , x j x_i,x_j xi,xj

   首先,随机选取种子值 x 0 x_0 x0,而 f ( x ) f(x) f(x) 次数大于 1 1 1 的整数系数多项式,然后用递归定义
x k + 1 ≡ f ( x k ) ( mod ⁡   n ) , 0 ≤ x k + 1 < n x_{k + 1} \equiv f(x_{k}) (\operatorname{mod}\ n),0 \leq x_{k + 1} < n xk+1f(xk)(mod n),0xk+1<n

计算 x k x_k xk,其中 k = 1 , 2 , … k = 1,2,\ldots k=1,2,
多项式 f ( x ) f(x) f(x) 的选取应该使得有很高的概率在出现重复之前生成适当多的整数 x i x_i xi
   经验表明,多项式 f ( x ) = x 2 + 1 f(x) = x ^ 2 + 1 f(x)=x2+1 在这一检验中表现良好

例题:
   求 n = 8051 n = 8051 n=8051 的非平凡因子

   取种子 x 0 = 2 x_0 = 2 x0=2,生成多项式 f ( x ) = x 2 + 1 f(x) = x ^ 2 + 1 f(x)=x2+1

   有 x 1 = 5 , x 2 = 26 , x 3 = 677 , x 4 = 7474 , x 5 = 2839 , x 6 = 871 x_1 = 5,x_2 = 26,x_3 = 677,x_4 = 7474,x_5 = 2839,x_6 = 871 x1=5,x2=26,x3=677,x4=7474,x5=2839,x6=871

   由欧几里得算法
( x 2 − x 1 , 8051 ) = ( 21 , 8051 ) = 1 ( x 4 − x 2 , 8051 ) = ( 7448 , 8051 ) = 1 \begin{align*} (x_2 - x_1,8051) & = (21,8051) &= 1 \\ (x_4 - x_2,8051) & = (7448,8051) &= 1 \end{align*} (x2x1,8051)(x4x2,8051)=(21,8051)=(7448,8051)=1=1

   因为 ( x 6 − x 3 , 8051 ) = ( 194 , 8051 ) = 97 (x_6 - x_3,8051) = (194,8051) = 97 (x6x3,8051)=(194,8051)=97
   序列 x i x_i xi 具有周期性质

  其中
   x 0 = 2 , x i + 1 ≡ x i 2 + 1 ( mod ⁡   97 ) , i ≥ 1 , x 1 = 5 x_0 = 2,x_{i + 1} \equiv x_i ^ 2 + 1 (\operatorname{mod}\ 97),i \geq 1,x_1 = 5 x0=2,xi+1xi2+1(mod 97),i1,x1=5

上图:
img

(神似 ρ \rho ρ,该方法因此得名)

   ρ \rho ρ 的尾部是非周期部分(在周期出现之前)

   事实证明:对具有相当大的素因子的分解中实用

   在小素数试除和波拉德方法都失效时

   才考虑真正的强力方法,如二次筛法或椭圆曲线法

特殊的同余式

定理 6.1 6.1 6.1(威尔逊定理)

   若 p p p 是素数,则 ( p − 1 ) ! ≡ − 1 ( mod ⁡   p ) (p - 1)! \equiv -1 (\operatorname{mod}\ p) (p1)!1(mod p)


证明:
   当 p = 2 p = 2 p=2 时,有 ( p − 1 ) ! ≡ 1 ≡ − 1 ( mod ⁡   2 ) (p - 1)! \equiv 1 \equiv -1 (\operatorname{mod}\ 2) (p1)!11(mod 2)

   因此,当 p = 2 p = 2 p=2 时定理成立

   现在,设 p p p 是大于 2 2 2 的素数

   利用定理 4.11 4.11 4.11,对每个满足 1 ≤ a ≤ p − 1 1 \leq a \leq p - 1 1ap1 的整数 a a a,存在一个逆 a a a,使得 1 ≤ a ‾ ≤ p − 1 1\leq \overline{a} \leq p - 1 1ap1 a a ‾ ≡ 1 ( mod ⁡   p ) a\overline{a}\equiv 1 (\operatorname{mod}\ p) aa1(mod p)

   由定理 4.12 4.12 4.12 知,在小于 p p p 的正整数中,逆是其本身的数仅有 1 1 1 p − 1 p - 1 p1 ,因此,可以将 2 2 2 ( p − 2 ) (p - 2) (p2) 分成 p − 3 2 \frac{p - 3}{2} 2p3

   并且每组的乘积模 p p p 1 1 1,从而有
2 ⋅ 3 ⋅ ⋅ ⋅ ⋅ ( p − 3 ) ⋅ ( p − 2 ) ≡ 1 ( mod ⁡   p ) 2 \cdot 3 \cdot \cdot \cdot \cdot (p - 3)\cdot (p - 2) \equiv 1 (\operatorname{mod}\ p) 23(p3)(p2)1(mod p)

   将同余式两边同时乘以 1 1 1 p − 1 p - 1 p1 得到
( p − 1 ) ! = 1 ⋅ 2 ⋅ ⋅ ⋅ ( p − 3 ) ⋅ ( p − 2 ) ⋅ ( p − 1 ) ≡ 1 ⋅ ( p − 1 ) ≡ − 1 ( mod ⁡   p ) (p - 1)! = 1 \cdot 2 \cdot \cdot \cdot (p - 3)\cdot (p - 2)\cdot(p - 1) \equiv 1 \cdot (p - 1) \equiv -1 (\operatorname{mod}\ p) (p1)!=12(p3)(p2)(p1)1(p1)1(mod p)

得证!


定理 6.2 6.2 6.2 (威尔逊定理之逆定理)

   设 n n n 为正整数且 n ≥ 2 n \geq 2 n2,若 ( n − 1 ) ! ≡ − 1 ( mod ⁡   n ) (n - 1)! \equiv -1(\operatorname{mod}\ n) (n1)!1(mod n),则 n ∈ P n \in P nP


证明:
   假设 n n n 是合数且 ( n − 1 ) ! ≡ − 1 ( mod ⁡   n ) (n - 1)! \equiv -1(\operatorname{mod}\ n) (n1)!1(mod n)

   因 n n n 是合数,故有 n = a b n = ab n=ab,其中 1 < a < n , 1 < b < n , a ∈ Z , b ∈ Z 1 < a < n,1 < b < n,a \in Z,b \in Z 1<a<n,1<b<naZ,bZ

   又因 a < n a < n a<n,且 a a a 是组成 ( n − 1 ) ! (n - 1)! (n1)! 中的一个数

   故 a ∣ ( n − 1 ) ! a | (n - 1)! a(n1)!

   因为 ( n − 1 ) ! ≡ − 1 ( mod ⁡   n ) (n - 1)! \equiv -1 (\operatorname{mod}\ n) (n1)!1(mod n)

   故 n ∣ [ ( n − 1 ) ! + 1 ] n | [(n-1)! + 1] n[(n1)!+1]

   由定理 1.8 1.8 1.8 (因为跳过了素数板块,所以会在下方给出)

   这也意味着 a a a 也整除 ( n − 1 ) ! + 1 (n - 1)! + 1 (n1)!+1

   利用 定理 1.9 1.9 1.9(同上) 和 a ∣ ( n − 1 ) ! a | (n - 1)! a(n1)! a ∣ [ ( n − 1 ) ! + 1 ] a | [(n - 1) ! + 1] a[(n1)!+1]

   可知 a ∣ { [ ( n − 1 ) ! + 1 − ( n − 1 ) ! ] = 1 } a | \{[(n - 1) ! + 1 - (n - 1)!] = 1\} a{[(n1)!+1(n1)!]=1}

   这与 a > 1 a > 1 a>1 矛盾!


定理 1.8 1.8 1.8

   如果 a , b , c ∈ Z a,b,c \in Z a,b,cZ a ∣ b , b ∣ c a | b,b|c ab,bc a ∣ c a | c ac


定理 1.9 1.9 1.9

   如果 a , b , m , n ∈ Z a,b,m,n \in Z a,b,m,nZ c ∣ a , c ∣ b c | a,c | b ca,cb c ∣ ( m a + n b ) c | (ma + nb) c(ma+nb)


定理 6.3 6.3 6.3(费马小定理)

   设 p ∈ P , a ∈ N ∗ p \in P,a \in N^{*} pP,aN p ∤ a p \nmid a pa,则 a p − 1 ≡ 1 ( mod ⁡   p ) a^{p - 1} \equiv 1 (\operatorname{mod}\ p) ap11(mod p)


最经典的欧拉证法
证明:
   考虑 p − 1 p - 1 p1 个整数, a , 2 a , 3 a , 4 a , … , ( p − 1 ) a a,2a,3a,4a,\ldots,(p - 1)a a,2a,3a,4a,,(p1)a 它们都不能被 p p p 整除,

   因为若 p ∣ j a p \mid ja pja,那么因 p ∤ a p \nmid a pa,则由引理 3.4 3.4 3.4 p ∣ j p \mid j pj

   因$ 1 \leq j \leq p - 1$,故不可能

   进一步,在 a , 2 a , 3 a , … , ( p − 1 ) a a,2a,3a,\ldots,(p - 1)a a,2a,3a,,(p1)a 任意两个整数在模 p p p 下都不同余

   为了证明这一点,我们假设 j a ≡ k a ( mod ⁡   p ) ja \equiv ka (\operatorname{mod}\ p) jaka(mod p)

   其中 1 ≤ j < k ≤ p − 1 1 \leq j < k \leq p - 1 1j<kp1

   那么,根据 4.5.1 4.5.1 4.5.1,因 ( a , p ) = 1 (a,p) = 1 (a,p)=1,故 j ≡ k ( mod ⁡   p ) j \equiv k (\operatorname{mod}\ p) jk(mod p)

   这也是不可能的,因为 j , k j,k j,k 都是小于 p p p 的正整数

   因为整数 a , 2 a , 3 a , … , ( p − 1 ) a a,2a,3a,\ldots,(p - 1)a a,2a,3a,,(p1)a 两两不同余,那么整数 a , 2 a , 3 a , … , ( p − 1 ) a a,2a,3a,\ldots,(p - 1)a a,2a,3a,,(p1)a ( p − 1 ) (p - 1) (p1) 个满足模 p p p 均不同余 0 0 0 且任何两个都互不同余的整数组成的集合中的元素

   故由引理 4.1 4.1 4.1 可知, a , 2 a , … , ( p − 1 ) a a,2a,\ldots,(p - 1)a a,2a,,(p1)a p p p 的最小正剩余按照一定的排列后必是 { 1 , 2 , 3 , … , p − 1 } \{1,2,3,\ldots,p-1\} {1,2,3,,p1}

    由同余性
∏ i = 1 p − 1 ( i a ) ≡ ( p − 1 ) ! ( mod ⁡   p ) \prod_{i = 1}^{p - 1} (ia) \equiv (p - 1)! (\operatorname{mod}\ p) i=1p1(ia)(p1)!(mod p)

   因此
a p − 1 ( p − 1 ) ! ≡ ( p − 1 ) ! ( mod ⁡   p ) a^{p - 1}(p - 1)! \equiv (p - 1)! (\operatorname{mod}\ p) ap1(p1)!(p1)!(mod p)

   因为 ( p − 1 ) ! (p - 1)! (p1)! p p p 互质,利用推论 4.5.1 4.5.1 4.5.1,可找到一个 ( p − 1 ) ! ‾ \overline{(p - 1)!} (p1)! 消去 ( p − 1 ) ! (p - 1)! (p1)!
a p − 1 ≡ 1 ( mod ⁡   p ) a^{p - 1} \equiv 1(\operatorname{mod}\ p) ap11(mod p)

欧拉定理

因为很重要,所以就单独拿出来讲

定义:设 n n n 是一个正整数,欧拉 ϕ \phi ϕ 函数 ϕ ( n ) \phi(n) ϕ(n) 定义为不超过 n n n 且与 n n n 互素的正整数的个数

定义:模 n n n 的即约剩余系是由 ϕ ( n ) \phi(n) ϕ(n) 个整数构成的集合,集合中每个元素均与 n n n 互素,且任何两个元素模 n n n 不同余

定理 6.13 6.13 6.13

   设 r 1 , r 2 , … , r ϕ ( n ) r_1,r_2,\ldots,r_{\phi(n)} r1,r2,,rϕ(n) 是模 n n n 的一个即约剩余系
   若 a a a 是一个正整数且 ( a , n ) = 1 (a,n) = 1 (a,n)=1,那么集合 a r 1 , a r 2 , … , a r ϕ ( n ) ar_1,ar_2,\ldots,ar_{\phi(n)} ar1,ar2,,arϕ(n) 也是模 n n n 的一个即约剩余系


证明:
   1 ◯ \textcircled{1} 1 先证明每个整数 a r j ar_j arj n n n 互素

   假设 ( a r j , n ) > 1 (ar_j,n) > 1 (arj,n)>1,那么 ( a r j , n ) (ar_j,n) (arj,n) 有一个素因子 p p p

   因此,或 p ∣ a p\mid a pa p ∣ r j p \mid r_j prj,从而或 p ∣ a p\mid a pa p ∣ n p \mid n pn,或 p ∣ r j p \mid r_j prj p ∣ n p \mid n pn
(翻译成C++语言就是:if((a % p == 0 && n % p == 0) || (r[j] % p == 0 && n % p == 0))

   但因 r j r_j rj 是模 n n n 的即约剩余系中的元素,

   故 p ∣ r j p\mid r_j prj p ∣ n p \mid n pn 不能同时成立

   又因 ( a , n ) = 1 (a,n) = 1 (a,n)=1,故 p ∣ a p \mid a pa p ∣ n p \mid n pn 不能同时成立,因此,对 j = 1 , 2 , 3 , … , ϕ ( n ) j = 1,2,3,\ldots,\phi(n) j=1,2,3,,ϕ(n) a r j ar_j arj n n n 互素

   2 ◯ \textcircled{2} 2 为了说明 a r j ar_j arj n n n 彼此互不同余,设 a r j ≡ a r k ( mod ⁡   n ) ar_j \equiv ar_k(\operatorname{mod}\ n) arjark(mod n)

   其中, j j j k k k 是不同的正整数且 1 ≤ j , k ≤ ϕ ( n ) 1 \leq j,k \leq \phi(n) 1j,kϕ(n)

   因 ( a , n ) = 1 (a,n) = 1 (a,n)=1,由推论 4.5.1 4.5.1 4.5.1 r j ≡ r k ( mod ⁡   n ) r_j \equiv r_k (\operatorname{mod}\ n) rjrk(mod n)

   又因 r j r_j rj r k r_k rk 是前一个模 n n n 的即约剩余系中的元素

   故 r j ≢ r k ( mod ⁡   n ) r_j \not \equiv r_k (\operatorname{mod}\ n) rjrk(mod n),矛盾!


定理 6.14 6.14 6.14(欧拉定理)

   设 m m m 是一个正整数, a a a 是一个整数且 ( a , m ) = 1 (a,m) = 1 (a,m)=1,那么 a ϕ ( m ) ≡ 1 ( mod ⁡   m ) a^{\phi(m)} \equiv 1 (\operatorname{mod}\ m) aϕ(m)1(mod m)


证明:
   令 r 1 , r 2 , … , r ϕ ( m ) r_1,r_2,\ldots,r_{\phi(m)} r1,r2,,rϕ(m) 是由不超过 m m m 且和 m m m 互素的元素组成的即约剩余系

   由定理 6.13 6.13 6.13

   因 ( a , m ) = 1 (a,m) = 1 (a,m)=1,故集合 a r 1 , a r 2 , … r ϕ ( m ) ar_1,ar_2,\ldots r_{\phi(m)} ar1,ar2,rϕ(m) 也是模 m m m 的一个即约剩余系

   从而,在一定顺序下 a r 1 , a r 2 , … , a r ϕ ( m ) ar_1,ar_2,\ldots,ar_{\phi(m)} ar1,ar2,,arϕ(m) 的最小正剩余一定是 r 1 , r 2 , … , r ϕ ( m ) r_1,r_2,\ldots,r_{\phi(m)} r1,r2,,rϕ(m)

   因此, a r 1 a r 2 … , a r ϕ ( m ) ≡ r 1 r 2 r 3 … r ϕ ( m )   ( mod ⁡   m ) ar_1ar_2\ldots,ar_{\phi(m)} \equiv r_1r_2r_3\ldots r_{\phi(m)} \ (\operatorname{mod}\ m) ar1ar2,arϕ(m)r1r2r3rϕ(m) (mod m)

   因此, a ϕ ( m ) r 1 r 2 … r ϕ ( m ) ≡ r 1 r 2 … r ϕ ( m ) ( mod ⁡   m ) a^{\phi(m)}r_1r_2\ldots r_{\phi(m)} \equiv r_1r_2\ldots r_{\phi(m)} (\operatorname{mod}\ m) aϕ(m)r1r2rϕ(m)r1r2rϕ(m)(mod m)

   因为 ( r 1 r 2 r 3 … r ϕ ( m ) , m ) = 1 (r_1r_2r_3\ldots r_{\phi(m)},m) = 1 (r1r2r3rϕ(m),m)=1

   故由推论 4.5.1 4.5.1 4.5.1 知, a ϕ ( m ) ≡ 1 ( mod ⁡   m ) a^{\phi(m)} \equiv 1(\operatorname{mod}\ m) aϕ(m)1(mod m)

乘性函数

定义:定义在所有正整数的函数称为算术函数

定义: 如果算术函数 f f f 对任意两个互素的正整数 n n n m m m,均有 $f(mn) = f(m)f(n) $,就称为乘性函数(或积性函数)
    如果对任意两个正整数 n n n m m m,均有 f ( m n ) = f ( m ) f ( n ) f(mn) = f(m)f(n) f(mn)=f(m)f(n),就称为完全乘性(或完全积性)函数


定理 7.1 7.1 7.1

    如果 f f f 是一个乘性函数,且对任意正整数 n n n 有素幂因子分解 n = p 1 a 1 p 2 a 2 p 3 a 3 … p s a s n = p_1^{a_1}p_2^{a_2}p_3^{a_3}\ldots p_s^{a_s} n=p1a1p2a2p3a3psas,那么 f ( n ) = f ( p 1 a 1 ) f ( p 2 a 2 ) f ( p 3 a 3 ) … f ( p s a s ) f(n) = f(p_1^{a_1})f(p_2^{a_2})f(p_3^{a_3})\ldots f(p_s^{a_s}) f(n)=f(p1a1)f(p2a2)f(p3a3)f(psas)

回到 ϕ \phi ϕ 函数


定理 7.2 7.2 7.2

    如果 p p p 是素数,则 $\phi§ = p - 1 $

    反之,若 p p p 是正整数且满足 $\phi§ = p - 1 $,则 p p p 是素数


定理 7.3 7.3 7.3

    设 p p p 是素数, a a a 是一个正整数,那么 $\phi(p^a) = p^a - p^{a - 1} $

证明:
    不超过 p a p^a pa 且和 p p p 不互素的正整数,即 k p kp kp,其中 1 ≤ k ≤ p a − 1 1 \leq k \leq p^{a - 1} 1kpa1

    因为恰有 p a − 1 p^{a - 1} pa1 个这样的数,故存在 p a − p a − 1 p^a - p^{a - 1} papa1 个与 p a p^a pa 互素且不超过 p a p^a pa 的素因子,所以 ϕ ( p a ) = p a − p a − 1 \phi(p^a) = p^a - p^{a - 1} ϕ(pa)=papa1


定理 7.4 7.4 7.4 *

    设 m m m n n n 是互素的正整数,那么 $\phi(mn) = \phi(m)\phi(n) $

  * 证明:

    我们用下列的方式列出不超过 m n mn mn 的所以正整数
1 m + 1 … ( n − 1 ) m + 1 2 m + 2 … ( n − 1 ) m + 2 ⋮ ⋮ ⋮ r m + r … ( n − 1 ) m + r ⋮ ⋮ ⋮ m 2 m … n m \begin{matrix} 1 & m + 1 & \ldots & (n - 1)m + 1 \\ 2 & m + 2 & \ldots & (n - 1)m + 2 \\ \vdots & \vdots & & \vdots \\ r & m + r & \ldots & (n - 1)m + r \\ \vdots & \vdots & & \vdots \\ m & 2m & \ldots & nm \\ \end{matrix} 12rmm+1m+2m+r2m(n1)m+1(n1)m+2(n1)m+rnm

    现在假设 r r r 是不超过 m m m 的正整数

    且设 ( m , r ) = d > 1 (m,r) = d > 1 (m,r)=d>1,那么第 r r r 行中没有与 m n mn mn 互素元素

    因为该行每个元素 k m + r km + r km+r,其中 k k k 是整数,且满足 0 ≤ k ≤ n − 1 0 \leq k \leq n - 1 0kn1

    又因为 d ∣ m d\mid m dm d ∣ r d \mid r dr,所以 d ∣ ( k m + r ) d \mid (km + r) d(km+r)

    因此,为找到该表中所有 与 m n mn mn 互素的整数

    只需要考虑满足 ( m , r ) = 1 (m,r) = 1 (m,r)=1 的第 r r r

    如果 ( m , r ) = 1 (m,r) = 1 (m,r)=1 1 ≤ r ≤ m 1 \leq r \leq m 1rm,则必须确定该行中有多少元素与 m n mn mn 互素

    该行中元素为 r , m + r , … , ( n − 1 ) m + r r,m + r,\ldots,(n - 1)m + r r,m+r,,(n1)m+r

    因为, ( m , r ) = 1 (m,r) = 1 (m,r)=1,故其中每个元素都与 m n mn mn 互素

    由定理 4.6 4.6 4.6 可知,第 r r r 行中 n n n 个整数形成模 n n n 的完全剩余系

    所以恰好有 ϕ ( n ) \phi(n) ϕ(n) 个与 n n n 互素的整数

    因为这 ϕ ( n ) \phi(n) ϕ(n) 个整数也与 m m m 互素,所以它们也是与 m n mn mn 互素的

    因为 ϕ ( m ) \phi(m) ϕ(m) 行中每行恰有 ϕ ( n ) \phi(n) ϕ(n) 个与 m n mn mn 互素的整数

    所以 $\phi(mn) = \phi(m)\phi(n) $


定理 7.5 7.5 7.5 *

    设 n = p 1 a 1 p 2 a 2 … p k a k n = p_1^{a_1}p_2^{a_2}\ldots p_{k}^{a_k} n=p1a1p2a2pkak 为 正整数 n n n 的素因子分解,那么
ϕ ( n ) = n ( 1 − 1 p 1 ) ( 1 − 1 p 2 ) … ( 1 p k ) \phi(n) = n(1 - \frac{1}{p_1})(1 - \frac{1}{p_2})\ldots(\frac{1}{p_k}) ϕ(n)=n(1p11)(1p21)(pk1)

    即:
ϕ ( n ) = n ∏ i = 1 k ( 1 − 1 p i ) \phi(n) = n\prod_{i = 1}^{k}(1 - \frac{1}{p_i}) ϕ(n)=ni=1k(1pi1)

证明:
    因为 定理 7.4 7.4 7.4 ϕ \phi ϕ 是乘性函数,故由定理 7.1 7.1 7.1 可知
ϕ ( n ) = ϕ ( p 1 a 1 ) ϕ ( p 2 a 2 ) … ϕ ( p k a k ) \phi(n) = \phi(p_1^{a_1})\phi(p_2^{a_2})\ldots\phi(p_k^{a_k}) ϕ(n)=ϕ(p1a1)ϕ(p2a2)ϕ(pkak)

    又由定理 7.3 7.3 7.3,当 j = 1 , 2 , … , n j = 1,2,\ldots,n j=1,2,,n
ϕ ( p j a j ) = p j a j − p j a j − 1 = p j a j ( 1 − 1 p j ) \phi(p_j^{a_j}) = p_j^{a_j} - p_j^{a_j - 1} = p_j^{a_j}(1 - \frac{1}{p_j}) ϕ(pjaj)=pjajpjaj1=pjaj(1pj1)

    因此
ϕ ( n ) = p 1 a 1 ( 1 − 1 p 1 ) p 2 a 2 ( 1 − 1 p 2 ) … p k a k ( 1 − 1 p k ) = p 1 a 1 p 2 a 2 p 3 a 3 … p k a k ⋅ ∏ i = 1 k ( 1 − 1 p i ) = n ∏ i = 1 k ( 1 − 1 p i ) \begin{align*} \phi(n) &= p_1^{a_1}(1 - \frac{1}{p_1})p_2^{a_2}(1 - \frac{1}{p_2})\ldots p_k^{a_k}(1 - \frac{1}{p_k})\\ &= p_1^{a_1}p_2^{a_2}p_3^{a_3}\ldots p_k^{a_k}\cdot \prod_{i = 1}^k (1 - \frac{1}{p_i})\\ &= n \prod_{i = 1}^k (1 - \frac{1}{p_i}) \end{align*} ϕ(n)=p1a1(1p11)p2a2(1p21)pkak(1pk1)=p1a1p2a2p3a3pkaki=1k(1pi1)=ni=1k(1pi1)

应用:
ϕ ( 100 ) = ϕ ( 2 2 ⋅ 5 2 ) = 100 ( 1 − 1 2 ) ( 1 − 1 5 ) = 40 ϕ ( 720 ) = ϕ ( 2 4 ⋅ 3 2 ⋅ 5 ) = 720 ( 1 − 1 2 ) ( 1 − 1 3 ) ( 1 − 1 5 ) = 192 \begin{align} \phi(100) &= \phi(2^2\cdot 5^2) = 100 (1 - \frac{1}{2})(1 - \frac{1}{5}) = 40 \\ \phi(720) &= \phi(2^4\cdot 3^2 \cdot 5) = 720(1 - \frac{1}{2})(1 - \frac{1}{3})(1 - \frac{1}{5}) = 192 \\ \end{align} ϕ(100)ϕ(720)=ϕ(2252)=100(121)(151)=40=ϕ(24325)=720(121)(131)(151)=192


定理 7.6 7.6 7.6

    设 n n n 是一个大于 2 2 2 的正整数,那么 ϕ ( n ) \phi(n) ϕ(n) 是偶数

证明:
    假设 n = p 1 a 1 p 2 a 2 … p k a k n = p_1^{a_1}p_2^{a_2}\ldots p_{k}^{a_k} n=p1a1p2a2pkak n n n 的素因子分解

    因为 ϕ \phi ϕ 是乘性函数

    所以 $\phi(n) = \prod_{i = 1}^{k} \phi(p_i^{a_i}) $

    由定理 7.3 7.3 7.3
ϕ ( p i a i ) = p i a i − 1 ( p i − 1 ) \phi(p_i^{a_i}) = p_i^{a_i - 1}(p_i - 1) ϕ(piai)=piai1(pi1)

    当 p i p_i pi 为 奇素数时 p i − 1 p_i - 1 pi1 是偶数

    当 p i = 2 p_i = 2 pi=2 a i > 1 a_i > 1 ai>1 p i a i − 1 p_i^{a_i - 1} piai1 为偶数

    这两个条件在 { n > 2 且 n ∈ N ∗ } \{n > 2 且 n \in N^* \} {n>2nN} 下至少满足一个

    故 ϕ ( p i a i ) \phi(p_i^{a_i}) ϕ(piai) 1 ≤ i ≤ k 1 \leq i \leq k 1ik 时至少有一个偶数

    因此 ϕ ( n ) \phi(n) ϕ(n) 是偶数


定义: 设 f f f 是一个算术函数,那么
F ( n ) = ∑ d ∣ n f ( d ) F(n) = \sum_{d \mid n} f(d) F(n)=dnf(d)
    代表 f f f n n n 的所有正因子处的值之和
    函数 F F F 称为 f f f 的和函数


定理 7.7 7.7 7.7

    设 n n n 是正整数,那么
∑ d ∣ n ϕ ( d ) = n \sum_{d \mid n} \phi(d) = n dnϕ(d)=n

证明:
    我们将 1 ∼ n 1\sim n 1n 的整数构成的集合进行分类

    整数 m m m 如果与 n n n 的最大公因子为 d d d

    则 m m m 属于 C d C_d Cd

    就是说,如果 m ∈ C d m \in C_d mCd,那么 ( m , n ) = d (m,n) = d (m,n)=d

    当且仅当 ( m d , n d ) = 1 (\frac{m}{d},\frac{n}{d}) = 1 (dm,dn)=1

    所以, C d C_d Cd 类中所含整数的个数是所有不超过 n d \frac{n}{d} dn 且和整数 n d \frac{n}{d} dn 互素的正整数的个数

    从上面的分析可以看到, C d C_d Cd 类中存在 ϕ ( n d ) \phi(\frac{n}{d}) ϕ(dn) 个整数

    因为我们将 1 ∼ n 1\sim n 1n 的所有整数分成互不相交的类,且每个整数只属于其中 1 1 1 个类,所以这些不同的类所含的整数个数之和就是 n n n

    因此,
n = ∑ d ∣ n ϕ ( n d ) n = \sum_{d \mid n} \phi(\frac{n}{d}) n=dnϕ(dn)

    因为 d d d 取遍所有整除 n n n 的正整数, n d \frac{n}{d} dn 也取遍它的所有因子

    所以
n = ∑ d ∣ n ϕ ( n d ) = ∑ d ∣ n ϕ ( d ) n = \sum_{d \mid n} \phi(\frac{n}{d}) = \sum_{d \mid n} \phi(d) n=dnϕ(dn)=dnϕ(d)


k k k 是一个正整数,求满足 ϕ ( n ) = k \phi(n) = k ϕ(n)=k 的所有正整数 n n n 的解的一个有用的办法就是给出满足方程 ϕ ( n ) = ∏ i = 1 k p i a i − 1 ( p i − 1 ) \phi(n) = \prod_{i = 1}^k p_i^{a_i - 1}(p_i - 1) ϕ(n)=i=1kpiai1(pi1) 的所有正整数解 n n n,其中 n n n 的素因子分解为 n = ∏ i = 1 k p i a i n = \prod_{i = 1}^k p_i^{a_i} n=i=1kpiai

例:
    求解 ϕ ( n ) = 8 \phi(n) = 8 ϕ(n)=8 的所有整数解

  解:

    由题

    a ∤ n ( a > 9 ) , 7 ∤ n a \nmid n(a > 9),7 \nmid n an(a>9),7n

    所以 n = 2 a 3 b 5 c ( a , b , c ∈ N ) n = 2^a3^b5^c(a,b,c \in N) n=2a3b5c(a,b,cN)

    故 b = 0 , 1 b = 0,1 b=0,1 c = 0 , 1 c = 0,1 c=0,1

    分讨 4 4 4 种情形

    得 n = 15 , 16 , 20 , 24 , 30 n = 15,16,20,24,30 n=15,16,20,24,30


  • 2
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值