[NOIP2018 提高组] 旅行 题解

[NOIP2018 提高组] 旅行

题面:

题目背景

NOIP2018 提高组 D2T1

题目描述

小 Y 是一个爱好旅行的 OIer。她来到 X 国,打算将各个城市都玩一遍。

小 Y 了解到,X 国的 n n n 个城市之间有 m m m 条双向道路。每条双向道路连接两个城市。 不存在两条连接同一对城市的道路,也不存在一条连接一个城市和它本身的道路。并且, 从任意一个城市出发,通过这些道路都可以到达任意一个其他城市。小 Y 只能通过这些 道路从一个城市前往另一个城市。

小 Y 的旅行方案是这样的:任意选定一个城市作为起点,然后从起点开始,每次可 以选择一条与当前城市相连的道路,走向一个没有去过的城市,或者沿着第一次访问该 城市时经过的道路后退到>上一个城市。当小 Y 回到起点时,她可以选择结束这次旅行或 继续旅行。需要注意的是,小 Y 要求在旅行方案中,每个城市都被访问到。

为了让自己的旅行更有意义,小 Y 决定在每到达一个新的城市(包括起点)时,将 它的编号记录下来。她知道这样会形成一个长度为 n n n 的序列。她希望这个序列的字典序 最小,你能帮帮她吗? 对于两个长度均为 n n n 的序列 A A A B B B,当且仅当存在一个正整数 x x x,满足以下条件时, 我们说序列 A A A 的字典序小于 B B B

  • 对于任意正整数 1 ≤ i < x 1 ≤ i < x 1i<x,序列 A A A 的第 i i i 个元素 A i A_i Ai 和序列 B B B 的第 i i i 个元素 B i B_i Bi 相同。
  • 序列 A A A 的第 x x x 个元素的值小于序列 B B B 的第 x x x 个元素的值。
输入格式

输入文件共 m + 1 m + 1 m+1 行。第一行包含两个整数 n , m ( m ≤ n ) n,m(m ≤ n) n,m(mn),中间用一个空格分隔。

接下来 m 行,每行包含两个整数 u , v ( 1 ≤ u , v ≤ n ) u,v (1 ≤ u,v ≤ n) u,v(1u,vn) ,表示编号为 u u u v v v 的城市之 间有一条道路,两个整数之间用一个空格分隔。

输出格式

输出文件包含一行, n n n 个整数,表示字典序最小的序列。相邻两个整数之间用一个 空格分隔。

样例 #1
样例输入 #1
6 5 
1 3 
2 3 
2 5 
3 4 
4 6
样例输出 #1
1 3 2 5 4 6
样例 #2
样例输入 #2
6 6 
1 3 
2 3 
2 5 
3 4 
4 5 
4 6
样例输出 #2
1 3 2 4 5 6
提示

【数据规模与约定】

对于 100 % 100\% 100% 的数据和所有样例, $1 \le n \le 5000 $ 且 m = n − 1 m = n − 1 m=n1 m = n m = n m=n

对于不同的测试点, 我们约定数据的规模如下:

[外链图片转存中…(img-rt0qmaUY-1727500922032)]

还是那个奇怪的数据范围: m = n − 1 m = n - 1 m=n1 / m = n m = n m=n

这说明形成的图不是树,就是基环树。

先来考虑树:

如何得到字典序最小的解呢?

不难想到给边排序,让 dfs 每次往最小的节点走,记录 dfs序。

我们不需要在 dfs 的时候考虑这件事,

我们可以在建图的时候通过排序,直接确定走的顺序。

然后是基环树:

和普通的树的唯一区别是:有个环!

我们看到数据范围 n ≤ 5000 n \leq 5000 n5000 ,直接暴力断边,可以通过。

AC-code:

#include<bits/stdc++.h>
using namespace std;
#define int long long 
int rd() {
	int x = 0, w = 1;
	char ch = 0;
	while (ch < '0' || ch > '9') {
		if (ch == '-') w = -1;
		ch = getchar();
	}
	while (ch >= '0' && ch <= '9') {
		x = x * 10 + (ch - '0');
		ch = getchar();
	}
	return x * w;
}

void wt(int x) {
	static int sta[35];
	int f = 1;
	if(x < 0) f = -1,x *= f;
	int top = 0;
	do {
		sta[top++] = x % 10, x /= 10;
	} while (x);
	if(f == -1) putchar('-');
	while (top) putchar(sta[--top] + 48);
}
const int N = 5e5+5;
int n,m,s[N];
int head[N],nxt[N<<1],to[N<<1],cnt;
void init() {memset(head,-1,sizeof(head));cnt = 0;}
void add(int u,int v) {
	nxt[cnt] = head[u];
	to[cnt] = v;
	head[u] = cnt++;
}
array<int,2> e[N << 1];
vector<int> ans;
void dfs(int x,int fa) {
	ans.emplace_back(x);
	for(int i = head[x];~i;i = nxt[i]) {
		int y = to[i];
		if(y ^ fa) 
			dfs(y,x);
	}
}
int dep[N],fa[N],vis[N],son[N],siz[N],top[N],num,id[N];
void dfs1(int x,int f) {
	dep[x] = dep[f] + 1;
	fa[x] = f;
	siz[x] = 1;
	for(int i = head[x];~i;i = nxt[i]) {
		int y = to[i];
		if(y ^ f)  {
			dfs1(y,x);
			siz[x] += siz[y];
			if(siz[son[x]] < siz[y]) son[x] = y;
		}
	}
}

void dfs2(int x,int topx) {
	top[x] = topx;
	id[x] = ++num;
	if(!son[x]) return;
	dfs2(son[x],topx);
	for(int i = head[x];~i;i = nxt[i]) {
		int y = to[i];
		if(y ^ fa[x] && y ^ son[x]) dfs2(y,y);
	}
}

int cirmax;
void addvis(int u,int v) {
	while(u ^ v) {
		if(dep[u] < dep[v]) swap(u,v);
		vis[u] = true;
		cirmax = max(cirmax,u);
		u = fa[u];
	}
	vis[u] = true;
}

int u,v;

signed main() {
	// freopen("P5022_20.in","r",stdin);
	init();
	n = rd(),m = rd();
	for(int i = 1;i<=m;i++) 
		e[i][0] = rd(),e[i][1] = rd();
	for(int i = 1;i<=m;i++) 
		e[i + m][0] = e[i][1],e[i + m][1] = e[i][0];
	if(m == n - 1) {
		sort(e + 1,e + m + m + 1,[&](array<int,2> x,array<int,2> y) {
			if(x[0] == y[0]) return x[1] > y[1];
			return x[0] < y[0];
		});
		for(int i = 1;i<=m + m;i++) add(e[i][0],e[i][1]);
		dfs(1,0);
	}
	else {
		auto find = [&](auto self,int x) -> int{
			if(s[x] ^ x) s[x] = self(self,s[x]);
			return s[x];
		};
		for(int i = 1;i<=n;i++) s[i] = i;
		for(int i = 1;i<=m;i++) {
			int fx = find(find,e[i][0]),fy = find(find,e[i][1]);
			if(fx ^ fy) s[fx] = fy;
			else u = e[i][0],v = e[i][1];
		}
		for(int i = 1;i<=m + m;i++) {
			if((e[i][0] == u && e[i][1] == v) || (e[i][1] == u && e[i][0] == v)) continue;
			add(e[i][0],e[i][1]);
		}
		dfs1(1,0);dfs2(1,1);
		addvis(u,v);
		init();
		sort(e + 1,e + m + m + 1,[&](array<int,2> x,array<int,2> y) {
			if(x[0] == y[0]) return x[1] > y[1];
			return x[0] < y[0];
		});
		init();
		for(int i = 1;i<=m + m;i++) {
			if((e[i][0] == u && e[i][1] == v) || (e[i][1] == u && e[i][0] == v)) continue;
			add(e[i][0],e[i][1]);
		}
		dfs(1,0);
		for(int x = n;x>=1;x--) {
			if(vis[x] && vis[fa[x]])
				u = x,v = fa[x];
			else continue;
			init();
			for(int i = 1;i<=m + m;i++) {
				if((e[i][0] == u && e[i][1] == v) || (e[i][1] == u && e[i][0] == v)) continue;
				add(e[i][0],e[i][1]);
			}
			vector<int> ab = ans;
			ans.clear();
			auto cmp = [&](vector<int> a,vector<int> b) -> bool{
				for(int i = 0;i<a.size();i++) 
					if(a[i] < b[i]) return true;
					else if(a[i] > b[i]) return false;
				return false;
			};
			dfs(1,0);
			if(cmp(ab,ans)) ans = ab;
		}
	}
	for(int i : ans) wt(i),putchar(' ');
	
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值