【论文阅读笔记】Modeling Sentiment Dependencies with Graph Convolutional Networks for Aspect-level Sentiment

Modeling Sentiment Dependencies with Graph Convolutional Networks for Aspect-level Sentiment Classification

目录

  • introduction
  • method
  • experiments
  • conclusion and future work

introduction

方面级情绪分类旨在区分句子中一个或多个方面术语上的情绪极性。本文是第一个在一句话中考虑方面之间的情感依赖的方面级情感分类任务。本文设计了带有位置编码的双向注意机制来捕获特定方面的表示。使用GCN来有效地捕获句子中不同方面之间的情感依赖关系。
例如:
在这里插入图片描述
在这里插入图片描述
从连词“But”中,我们很容易看出第二个方面“food”与“service”的情感极性相反。

method

本项工作的总体结构图:
在这里插入图片描述
它由Input embedding layer、Bidirectional Long Short-Term Memory (Bi-LSTM)、Position encoding、Bidirectional attention mechanism、Graph convolutional network和Output layer组成。

Input embedding layer:
通过Glove和Bert进行嵌入,得到每个单词的向量表示,并组合成表示矩阵。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
Bidirectional Long Short-Term Memory (Bi-LSTM):
在这一层,使用两个LSTM得到forward和backward的隐藏表示,随后将两个表示进行拼接得到新的上下文和方面的隐藏向量。可以同时关注前面、后面的证据。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
Position encoding:
该层将位置信息加入到表示当中,使得与靠近target’的上下文词的权重更高,避免target附近的其他情感词影响对target情感的判断。
在这里插入图片描述

在这里插入图片描述
Bidirectional attention mechanism:
Context to aspect attention
上下文到方面注意学习根据查询向量为方面词分配注意权值,其中查询向量hc,是通过对上下文隐藏输出hc进行平均池化操作得到的。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
Aspect to context attention
方面对上下文的注意学习捕获方面的具体表示,这与方面注意的上下文相似。通过新的方面表示形式和位置感知表示形式pai来计算注意力得分,其过程可以表述为:
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
Graph convolutional network:
在这里插入图片描述
(a)邻接关系图:每个方面只与和自己相邻的方面有连边。
(b)全局关系图:每个方面与其他方面均有连边。
在这里插入图片描述
X为前面得到的方面表示,x1、x2…作为每一个方面节点的表示构成关系图,然后通过多层GCN得到最后可以用于分类的表示。公式如下:
在这里插入图片描述
在这里插入图片描述
Output layer:
在这里插入图片描述
在这里插入图片描述
这一层先对GCN得到的表示做一个线性变化,最后通过softmax尽可以进行情感分类了。

experiments

dataset:
two datasets from SemEval 2014 Task (the reviews in laptop and restaurant)
在这里插入图片描述
在这里插入图片描述
损失函数:在这里插入图片描述
实验设置:
评价指标Accuracy、 Macro-F1
单词向量的维数Glove为300维,BERT为768维
LSTM隐藏单元数设置为300
GCN层的输出维数设置为600
最后一层完全连接层的权值矩阵由正态分布N(0,1)随机初始化。
除最后一个完全连接层外,所有权值矩阵都由均匀分布U(−0.01,0.01)随机初始化。
dropout设置为0.5
batch size设置为32
学习率为0.001
实验结果:
在这里插入图片描述

conclusion and future work

conclusion:
本文设计了一种新的基于GCN的方面级情绪分类模型。该模型的核心思想是利用GCN对一句话中不同方面之间的情感依赖进行建模。具体来说,SDGCN首先采用带有位置编码的双向注意机制来获取特定方面的表示,然后通过方面之间的消息传递来获取情感依赖。案例研究表明,SDGCN不仅可以关注对预测各方面情绪极性重要的词汇,还可以关注有助于判断各方面情绪依赖关系的词汇。
future work:
在未来的工作中,我们将探索如何在各方面之间建立更精确的情感图结构。本文中的两种无向情感图是粗糙的。作者推测利用文本信息来定义图形可以创建更好的图形结构。

论文原文链接:Modeling Sentiment Dependencies with Graph Convolutional Networks for Aspect-level Sentiment Classification

  • 0
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
practical poissonian-gaussian noise modeling and fitting for single-image ra(单幅图像的实用泊松-高斯噪声建模和拟合)是一种用于处理数字图像的方法。图像通常会受到各种噪声的干扰,其中泊松与高斯噪声是最常见的。 泊松噪声是由于光子在相机的图像传感器上随机到达的数量不稳定而产生的。这种噪声的特征是其值在整个图像中有明显的空间相关性,并且通常会在边缘和细节部分更为显著。泊松噪声建模通常通过对每个像素的信号强度建模来实现,可以使用最大似然估计方法来估计泊松参数。然后,可以根据该模型对图像进行降噪处理。 高斯噪声则是由于无法避免的电子噪声、传输噪声和其他干扰因素引起的。这种噪声的特征是其值在整个图像中呈现出随机分布,且无空间相关性。高斯噪声建模可以通过对噪声标准差进行估计来实现,这可以通过图像的局部特性进行参数优化和拟合。 将泊松噪声与高斯噪声结合起来建模和拟合是处理单幅图像噪声的实际需求。这种方法可以最大限度地减少噪声对图像质量的不利影响,并提高图像的清晰度和细节。为此,可以使用适当的算法和技术,如小波去噪、图像增强和傅里叶变换等方法,对噪声进行建模和拟合。 值得注意的是,实际的泊松-高斯噪声建模和拟合需要考虑到图像的特性、噪声的分布特征以及算法的复杂度等因素。这种方法在许多图像处理应用中具有广泛的应用,如医学图像处理、无损图像压缩和计算机视觉等领域,可以改善图像质量,提高图像分析和识别的准确性。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值