Selective Attention Based Graph Convolutional Networks for Aspect-Level Sentiment Classification

在这里插入图片描述

基于选择性注意的图卷积网络用于方面级情感分类

Abstract

方面级情感分类的目的是识别句子中某一特定aspect词语的情感极性。最近的方法使用依赖树上的图卷积网络(GCN)来获得aspect terms的语法感知表示,并学习aspect和上下文词之间的交互。GCNS通常在两层的情况下获得最佳性能,更深的GCNS不会带来任何额外的收益。然而,在某些情况下,在依存关系树上的两跳内不能到达方面术语的对应意见词。因此,本文设计了一种新的基于选择性注意的GCN模型(SA-GCN)来处理方面词与观点词相距较远的情况。由于观点词是对aspect-term极性分类的直接解释,因此本文将观点抽取作为辅助任务来辅助情感分类任务。具体地说,在对依存关系树进行操作的GCN模型的基础上,使用自我注意直接为句子中的每个单词选择注意力得分最高的k个单词。然后,在生成的前k个关注度图上应用另一个GCN模型来整合来自所选上下文词的信息。

Proposed Model

Overview of the model

在这里插入图片描述

Encoder for Aspect Term and Context

将输入构造成:CLS + Sentence + SEP + term + SEP,馈送到BERT学习,这种格式能够使得整个句子和term之间进行显示交互,从而获得的单词表示是term相关的。得到最终的词嵌入 X ∈ R n × d B X\in R^{n\times d_B} XRn×dB

GCN over Dependency Trees

使用GCN来捕获词语结点和其相邻结点之间的句法关系(在每个GCN层中,结点聚集来自其一跳邻居的信息并更新其表示,每个单词被看做单个结点,其表示被表示为节点特征),图上的消息传递表示为:
H ( l ) = σ ( A H ( l − 1 ) W ) H^{(l)}=\sigma(AH^{(l-1)}W) H(l)=σ(AH(l1)W)
其中A表示邻接矩阵, H l H^{l} Hl表示第l个GCN层的输出, H 0 = X ∈ R n × d B H^{0} = X\in R^{n\times d_B} H0=XRn×dB表示第一个GCN的输入

SA-GCN基于选择性注意力的GCN

上面已经通过GCN为每个词的表示带来了语法信息,但是也限制了aspect word和长距离观点词之间的交互。为了缓解这个问题,作者提出了一种基于选择注意力的GCN用于识别重要的上下文词,将它们的信息整合到aspect term的表示中。有三部分组成:多头注意力、top-K选择,GCN层。

self-attention

首先用多头自注意力矩阵 A s c o r e i ∈ R n × n ( 1 ≤ i ≤ L ) A^i_{score}\in R^{n\times n}(1 \le i \le L) AscoreiRn×n(1iL),L是头的个数。
表述为: A s c o r e i = ( H k , i W k ) ( H q , i W q ) T d h e a d A^i_{score}=\frac{(H_{k,i}W_k)(H_{q,i}W_q)^T}{\sqrt{d_{head}}} Ascorei=dhead (Hk,iWk)(Hq,iWq)T
其中 H ∗ , i = H ∗ [ : , : , i ] , ∗ = ∈ { k : k e y , q : k e y } H_{*,i}=H_{*}[:,:,i],*=\in \{k:key, q:key\} H,i=H[:,:,i]={k:key,q:key} H k ∈ R n × d h e a d × L H_k\in R^{n\times d_{head}\times L} HkRn×dhead×L H q ∈ R n × d h e a d × L H_q\in R^{n\times d_{head}\times L} HqRn×dhead×L d h , d h e a d d_h,d_{head} dhdhead分别表示为结点特征的维度,每个头部的维度。
得到的注意力矩阵可以被认为是L个完全连通图,其中每个词都与具有不同关注度的所有其他上下文词相连。
尽管关注度有助于区分不同的词,单完全图仍然会导致aspect结点直接融合所有其他词的信息,并且在GCN的特征聚合过程中经常引入噪声,进一步损害了情感预测,基于此,本文提出了一种top-K注意力选择机制来系数完全连通图,得到一种新的稀疏图用于GCN的特征聚集。

Top-K Selection

选择前K个上下文词的原因:只有少数几个词足以确定一个aspect词的情感极性。
本文设计了两种top-K选择策略:Head-independent selection、Head-dependent selection
Head-independent selection首先对每个头部元素的注意分数矩阵进行求和,然后利用top-K函数生成的掩码找到钱K个上下文词。
在这里插入图片描述
Head-dependent selection根绝每个头部的注意力分数矩阵分别寻找前K个上下文词在这里插入图片描述
从top-K选择中,根据新的关注度得分得到图,并将它们传递给下一个GCN层。

GCN Layer

在这里插入图片描述
其中, H ∧ l ∈ R n × d h \overset{\wedge}{H}^{l}\in R^{n\times d_h} HlRn×dh是第 l l l个SA-GCN块的输入,有第 i i i个头部的 H ∧ ( l , i ) ∈ R n × d h e a d \overset{\wedge}{H}^{(l,i)}\in R^{n\times d_{head}} H(l,i)Rn×dhead的级联组成。 H ∧ 0 ∈ R n × d h \overset{\wedge}{H}^{0}\in R^{n\times d_h} H0Rn×dh是第一个SA-GCN块的输入,即来自对依赖树进行操作的GCN层。

Experimental Result

在这里插入图片描述

启示

  • top-K选择策略的应用在深度学习中的任务中应用比较广泛,可以将这种方法应用到NLP的其他领域。
  • 对句子构建依赖树可以作为一个小trick应用到其他任务。
  • 没有将relation work进行记录,但是这篇文章的相关工作写的真的非常好。
  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

「已注销」

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值