细粒度分类:B-CNN论文笔记——Bilinear CNN Models for Fine-grained Visual Recognition

本文详细介绍了《Bilinear CNN Models for Fine-grained Visual Recognition》论文,探讨双线性模型如何应用于细粒度图像分类。通过两个CNN特征提取器的外积操作,捕捉特征通道间的成对相互关系,增强模型对局部特征交互的理解。论文展示了不同结构的双线性模型在细粒度分类任务中的效果,并进行了端到端的训练和精度对比。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

细粒度分类:B-CNN——Bilinear CNN Models for Fine-grained Visual Recognition

综述

论文题目:《Bilinear CNN Models for Fine-grained Visual Recognition》
会议时间:IEEE International Conference on Computer Vision 2015 (ICCV 2015)

论文地址:https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Lin_Bilinear_CNN_Models_ICCV_2015_paper.pdf

代码链接(PyTorch版本,非官方):https://github.com/HaoMood/bilinear-cnn

针对领域:细粒度图像分类(FGVC)

  本文只介绍了双线性模型的网络结构,原论文中还推广了各种无顺序纹理的描述(texture descriptors),感兴趣的同学可以去看一下原文。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

视觉萌新、

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值