目录
峰值信噪比PSNR(Peak Signal-to-Noise Ratio)
结构相似度SSlM(Structural Similarity Index Measurement)
FID(Fréchet Inception Distance)
基于Python计算两张图片/两个文件夹图片之间的PSNR和SSIM参考另一篇博客:IQA-PyTorch快速使用教程
峰值信噪比PSNR(Peak Signal-to-Noise Ratio)
PSNR是最常用的图像质量评价指标之一。它衡量修复图像与原始图像之间的均方根误差,并将其转化为分贝单位。PSNR值越高,表示修复图像与原始图像越接近。PSNR的单位为dB。
PSNR的计算公式如下:
式中:为图像可取到的最大像素值,
为修复图像和对应真实图像的均方误差。
结构相似度SSlM(Structural Similarity Index Measurement)
SSIM是另一个衡量图像质量的指标,它考虑了亮度、对比度和结构信息之间的相似性。SSIM的值在-1到1之间,越接近1表示修复图像与原始图像越相似。
SSIM基于滑动窗口实现计算,即每次计算时从图片上取一个尺寸为N×N的窗口,基于窗口计算SSIM的值,遍历整张图像后再对所有窗口的值取平均,得出整张图像的SSIM值。
SSIM的计算公式如下: