图像修复算法常用评估指标介绍及Python代码(PSNR/SSIM/FID)

目录

峰值信噪比PSNR(Peak Signal-to-Noise Ratio)

结构相似度SSlM(Structural Similarity Index Measurement)

FID(Fréchet Inception Distance)

代码实践:计算两张图片之间的PSNR和SSIM

代码实践:计算两个文件夹图片之间的PSNR和SSIM


基于Python计算两张图片/两个文件夹图片之间的PSNR和SSIM参考另一篇博客:IQA-PyTorch快速使用教程

峰值信噪比PSNR(Peak Signal-to-Noise Ratio)

PSNR是最常用的图像质量评价指标之一。它衡量修复图像原始图像之间的均方根误差,并将其转化为分贝单位。PSNR值越高,表示修复图像与原始图像越接近。PSNR的单位为dB。

PSNR的计算公式如下:

式中:MAX_{J}^{2}_{}^{}为图像可取到的最大像素值,MSE为修复图像和对应真实图像的均方误差。

结构相似度SSlM(Structural Similarity Index Measurement)

SSIM是另一个衡量图像质量的指标,它考虑了亮度、对比度和结构信息之间的相似性。SSIM的值在-1到1之间,越接近1表示修复图像原始图像越相似。

SSIM基于滑动窗口实现计算,即每次计算时从图片上取一个尺寸为N×N的窗口,基于窗口计算SSIM的值,遍历整张图像后再对所有窗口的值取平均,得出整张图像的SSIM值。

SSIM的计算公式如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值