模型评估:可决系数与纳什效率系数

可决系数R2衡量统计模型的拟合优度,取值范围在0到1之间,值越接近1表示模型拟合越好。纳什效率系数NSE用于评估模拟模型如水文模型的预测精度,范围为(-∞,1],NSE接近1表示预测能力越强。在回归分析中,NSE与R2等价,均取值在0到1之间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、可决系数 R2

  可决系数(Coefficient of determination,R)是用来度量一个统计模型的拟合优度的。其数学表达式如下:
在这里插入图片描述
式中:yi 是变量观测值; y ‾ \overline{y} y 是变量观测值的均值;
   y ^ i \hat{y}_i y^i 是统计模型的变量模拟值;
   R2 的取值范围为[0,1]。

2、纳什效率系数 NSE

   纳什效率系数(Nash-Sutcliffe Efficiency, NSE)常用于用于量化模拟模型(如水文模型)的预测精度。其数学表达式如下:
在这里插入图片描述
式中:yipred 是预测模型对变量的预测值。预测值属于回归样本外得到的预测结果,和回归模型的模拟值有很大区别,模型误差的平方和 ( yi− yipred)2 可能大于总平方和 ( yi y ‾ \overline{y} y )2 ,对于一个完美的模型,估计的误差的方差等于0,则 NSE=1;相反,一个模型产生的估计误差方差等于观察到的时间序列的方差,结果 NSE=0。实际上,NSE=0表示该模型具有与时间序列平均值相同的预测能力,即误差平方和。当预测模型得到的估计误差方差显著大于观测值方差时,NSE<0。NSE值越接近1,表明模型预测能力越好。因此NSE的取值范围为 (- ∞ \infty , 1]。
   但是,如果将NSE用于模型回归中,则和 R2 完全等价,范围是[0,1]。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值