概率论知识:贝叶斯公式理解

似然函数

  似然函数(Likelihood Function)用于衡量一组观察数据在假设的不同参数值下发生的可能性。其定义如下:

  假设一个统计模型由一组未知的参数 θ θ θ 和观测数据 X X X={ x 1 x_1 x1, x 2 x_2 x2,……, x n x_n xn}组成,假设观测数据 X X X 是独立同分布的,且概率密度函数(或概率质量函数)为 f ( x ∣ θ ) f(x|θ) f(xθ) ,其中 x x x 是观测数据, θ θ θ 是模型的参数。我们用 似然函数 L ( θ ) L(θ) L(θ) 描述在已知观测数据 x x x 下,参数为 θ θ θ 的可能性,它是参数 θ θ θ 的函数。独立同分布,概率取值相乘。
L ( θ ) = L ( x 1 , x 2 , … … , x n ∣ θ ) = P ( x 1 ∣ θ ) P ( x 2 ∣ θ ) … … P ( x n ∣ θ ) = ∏ i = 1 n f ( x i ∣ θ ) L(θ)=L(x_1,x_2,……,x_n|θ)=P(x_1|θ)P(x_2|θ)……P(x_n|θ)=\prod_{i=1}^{n} f(x_i|θ) L(θ)=L(x1,x2,……,xnθ)=P(x1θ)P(x2θ)……P(xnθ)=i=1nf(xiθ)

  概率: 描述在固定参数 θ θ θ 下,某一事件 x x x 发生的可能性。
  似然: 描述已经观察到事件 x x x ,而参数 θ θ θ 是什么的可能性。

贝叶斯公式

   贝叶斯公式简单讲,就是影响概率发生的条件本身也是有概率的,其数学公式如下:
P ( A ∣ B ) = P ( A ) P ( B ∣ A ) P ( B ) P(A|B)=\frac{P(A)P(B|A)}{P(B)} P(AB)=P(B)P(A)P(BA)
为方便理解,我们进一步对公式进行解释:
P ( 条件 ∣ 现象 ) = P ( 条件 ) P ( 现象 ∣ 条件 ) P ( 现象 ) P(条件|现象)=\frac{P(条件)P(现象|条件)}{P(现象)} P(条件现象)=P(现象)P(条件)P(现象条件)

似然概率(条件概率)

   似然概率描述的是条件对现象的解释能力,即在指定条件下观测到现象的概率。
P ( 现象 ∣ 条件 ) P(现象|条件) P(现象条件)

   在条件概率中引入极大似然估计,可以得到 现象与条件两者可能存在较高的相关性,因此,在实际应用中,我们习惯性称 条件概率 为 似然概率。

先验概率

   先验概率 即条件本身发生的概率。先验概率可以简单理解为 根据已有经验做出的推断得到的概率
P ( 条件 ) P(条件) P(条件)

后验概率

   后验概率是通过观察到现象后反推条件的概率。
P ( 条件 ∣ 现象 ) P(条件|现象) P(条件现象)

对公式进行处理:
P ( 条件 ∣ 现象 ) = P ( 条件 ) P ( 现象 ∣ 条件 ) P ( 现象 ) P(条件|现象)=\frac{P(条件)P(现象|条件)}{P(现象)} P(条件现象)=P(现象)P(条件)P(现象条件)
P ( 条件 ∣ 现象 ) = P ( 条件 ) P ( 现象 ∣ 条件 ) P ( 现象 ) P(条件|现象)=P(条件)\frac{P(现象|条件)}{P(现象)} P(条件现象)=P(条件)P(现象)P(现象条件)
后验概率 = 先验概率 × 标准化的似然概率 后验概率=先验概率×标准化的似然概率 后验概率=先验概率×标准化的似然概率

参考:贝叶斯公式解释为什么你永远说服不了你亲戚的阴谋论

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值