手动将ModelScope的模型下载到本地

一、ModelScope 介绍

ModelScope 官网地址: https://www.modelscope.cn/home
模型库地址:https://www.modelscope.cn/models
文档中心:https://www.modelscope.cn/docs/home

ModelScope旨在打造下一代开源的模型即服务共享平台,为泛AI开发者提供灵活、易用、低成本的一站式模型服务产品,让模型应用更简单!

ModelScope社区成立于 2022 年 6 月,是一个模型开源社区及创新平台,由阿里巴巴通义实验室,联合CCF开源发展委员会,共同作为项目发起创建。ModelScope社区联合国内AI领域合作伙伴与高校机构,致力于通过开放的社区合作,构建深度学习相关的模型开源,并开源相关模型服务创新技术,推动模型应用生态的繁荣发展。

我们希望在汇集行业领先的预训练模型,减少开发者的重复研发成本,提供更加绿色环保、开源开放的AI开发环境和模型服务,助力绿色“数字经济”事业的建设。 ModelScope平台将以开源的方式提供多类优质模型,开发者可在平台上免费体验与下载使用。

二、将需要的模型下载到本地

我的本地环境是win11

C:\Users\zjh>python -V
Python 3.12.2

C:\Users\zjh>pip -V
pip 25.0.1 from C:\Users\zjh\AppData\Local\Programs\Python\Python312\Lib\site-packages\pip (python 3>.12)
  1. 选择需要下载的模型
    这里选择的的是 DS 70B
    在这里插入图片描述
    在这里插入图片描述

  2. 下载 ModelScope SDK:

    C:\Users\zjh>pip install modelscope
    
  3. 下载模型

    在下载模型时报错:ModuleNotFoundError: No module named ‘pkg_resources’
    这是由于Python 环境中缺少 pkg_resources 模块,pkg_resources 是 setuptools 包的一部分。
    安装setuptools 包: pip install --upgrade setuptools

    C:\Users\zjh>modelscope download --model="deepseek-ai/DeepSeek-R1-Distill-Llama-70B" --local_dir "F:\Models"
    	Downloading Model from https://www.modelscope.cn to directory: F:\Models
    	Downloading [LICENSE]: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1.04k/1.04k [00:00<00:00, 1.64kB/s]
    	Downloading [configuration.json]: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████| 73.0/73.0 [00:00<00:00, 107B/s]
    	Downloading [config.json]: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████| 879/879 [00:00<00:00, 1.17kB/s]
    	Downloading [figures/benchmark.jpg]: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████| 759k/759k [00:00<00:00, 987kB/s]
    	Downloading [generation_config.json]: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████| 181/181 [00:01<00:00, 179B/s]
    	Processing 26 items:  19%|█████████████████████▉                                                                                            | 5.00/26.0 [00:20<00:03, 6.11it/s]
    	Downloading [model-00007-of-000017.safetensors]:   5%|████▌                                                                              | 440M/7.84G [02:29<1:09:58, 1.90MB/s]
    	Downloading [model-00006-of-000017.safetensors]:  15%|████████████▎                                                                       | 1.19G/8.09G [02:30<14:52, 8.31MB/s]
    	Downloading [model-00005-of-000017.safetensors]:   5%|████                                                                                 | 385M/7.84G [02:30<27:00, 4.95MB/s]
    	Downloading [model-00008-of-000017.safetensors]:   6%|████▌                                                                              | 458M/8.09G [02:29<1:02:04, 2.20MB/s]
    	Downloading [model-00004-of-000017.safetensors]:  13%|██████████▌                                                                         | 1.02G/8.09G [02:30<26:22, 4.80MB/s]
    	Downloading [model-00001-of-000017.safetensors]:  12%|██████████▏                                                                         | 1.01G/8.33G [02:30<13:50, 9.46MB/s]
    	Downloading [model-00002-of-000017.safetensors]:  12%|██████████▏                                                                          | 993M/8.09G [02:30<18:49, 6.77MB/s]
    	Downloading [model-00003-of-000017.safetensors]:  77%|████████████████████████████████████████████████████████████████▊                   | 1.13G/1.47G [02:30<00:43, 8.29MB/s]
    
    • --model=“deepseek-ai/DeepSeek-R1-Distill-Llama-70B” : 指定模型名称
    • --local_dir “F:\Models”: 指定本地路径
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值