洛谷P2868 [USACO07DEC]Sightseeing Cows G 题解

洛谷P2868 [USACO07DEC]Sightseeing Cows G 题解

题目链接:P2868 [USACO07DEC]Sightseeing Cows G

题意

给定有向图,有点权 F i F_i Fi 和边权 T i T_i Ti ,找一条回路(不一定是简单回路),使得
∑ F i ∑ T i \dfrac{\sum F_i}{\sum T_i} TiFi
尽可能的大,求出这个值

若回路的结点序列中含相同结点,只计算一次点权

2 ≤ n ≤ 1 0 3 , 1 ≤ m ≤ 5 × 1 0 3 , 1 ≤ F i , T i ≤ 1 0 3 2 \le n \le 10^3,1\le m \le 5 \times 10^3,1 \le F_i,T_i \le 10^3 2n103,1m5×103,1Fi,Ti103

比较经典的01分数规划问题


∑ F i × 1 ∑ T i > x \sum F_i \times \dfrac{1}{\sum T_i} > x Fi×Ti1>x
移项可得
∑ ( F i − x T i ) > 0 \sum (F_i - x T_i) > 0 (FixTi)>0
取个反可得
∑ ( x T i − F i ) < 0 \sum (xT_i - F_i) < 0 (xTiFi)<0
然后就变成了判负环的问题。

二分一个 x x x ,然后每次跑个spfa检验一下

时间复杂度 O ( log ⁡ 2 1 0 7 × n m ) O(\log_2 10^7 \times nm) O(log2107×nm)

为什么大于也可以求出答案呢?因为当 x x x 足够精确时,也就是答案了

这里有个问题,题目说的是回路,不是环(简单回路),

不过事实上答案中都是环(简单回路)

这里有个证明,比较繁琐,因此我来提供一种简单证明


证:考虑最简单的情况,

设两个环 A , B A,B A,B 的交集为结点 u u u (此时图可以是一个8字形)

A A A 的答案是 x x x B B B 的答案是 y y y

  • x = y x=y x=y

    则若合并 A , B A,B A,B ,多出来的几条连接 u u u 的边会使分母增加

    则答案小于 x x x

    只有这几条边的 T i T_i Ti 都为 0 0 0 时,

    合并后的答案才能达到 x x x ,但是数据范围里没有这种情况。

    故合并 A , B A,B A,B 一定不是最优的。

  • x > y x>y x>y x < y x<y x<y

    那显然合并了就更烂了哇。肯定不是最优的。

证毕。


代码:

#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <iomanip>
#include <queue>
using namespace std;
#define int long long
#define INF 0x3f3f3f3f3f3f3f3f
#define N (int)(1e3+15)
#define M (int)(5e3+15)
struct Edge
{
    int u,v,T,next;
}e[M];
int n,m,F[N];
double d[N];
int head[N],pos=1,vis[N],cnt[N];
void addEdge(int u,int v,int T)
{
    e[++pos]={u,v,T,head[u]};
    head[u]=pos;
}
queue<int> q;
bool spfa(int st,double x)
{
    while(!q.empty())q.pop();
    q.push(st);vis[st]=1;d[st]=0;
    while(!q.empty())
    {
        int u=q.front();q.pop();
        vis[u]=0;
        for(int i=head[u]; i; i=e[i].next)
        {
            int v=e[i].v;
            double w=x*e[i].T-F[u];
            if(d[v]>d[u]+w)
            {
                d[v]=d[u]+w;
                if(!vis[v])
                {
                    q.push(v);++cnt[v];vis[v]=1;
                    if(cnt[v]>=n)return 1;
                }
            }
        }
    }
    return 0;
}
signed main()
{
    ios::sync_with_stdio(0);
    cin.tie(0);cout.tie(0);
    // freopen("check.in","r",stdin);
    // freopen("check.out","w",stdout);
    cin >> n >> m;
    for(int i=1; i<=n; i++) cin >> F[i];
    for(int i=1,u,v,T; i<=m; i++)
    {
        cin >> u >> v >> T;
        addEdge(u,v,T);
    }
    double l=0,r=1005;
    while(fabs(r-l)>1e-4)
    {
        double mid=(l+r)/2;
        bool ok=0;
        for(int i=1; i<=n; i++)
        {
            d[i]=1e66;
            cnt[i]=vis[i]=0;
        }
        for(int i=1; i<=n; i++)
        {
            if(!cnt[i])
            {
                if(spfa(i,mid))
                    {ok=1;break;}
            }
        }
        ok?l=mid:r=mid;
    }
    cout << fixed << setprecision(2);
    cout << l << '\n';
    return 0;
}

转载请说明出处

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个长度为 $n$ 的书架,每本书有一个高度 $h_i$。现在你可以进行以下两种操作: - 将一本书放在书架的最左边或最右边,花费为 $c_1$。 - 将一本高度为 $h_i$ 的书放在一本高度为 $h_j$ 的书的上面,花费为 $c_2$。 现在你需要将书架上的书按照高度从小到大排列,求最小花费。 输入格式 第一行包含三个整数 $n,c_1,c_2$。 第二行包含 $n$ 个整数 $h_i$。 输出格式 输出一个整数,表示最小花费。 数据范围 $1\leq n\leq 200,1\leq c_1,c_2\leq 10^9,1\leq h_i\leq 10^9$ 输入样例 5 1 2 3 1 4 2 5 输出样例 6 算法1 (动态规划) $O(n^2)$ 首先考虑一个朴素的 dp,设 $f_{i,j}$ 表示前 $i$ 本书已经排好序,第 $i+1$ 本书放在第 $j$ 个位置的最小花费。 状态转移方程为: $$ f_{i,j}=\min\{f_{i-1,k}+c_1\}+\begin{cases}&\text{if }h_{i+1}>h_j\\c_2&\text{otherwise}\end{cases} $$ 其中 $k$ 取遍 $1\sim i$,表示将第 $i+1$ 本书放在第 $k$ 个位置。 时间复杂度 $O(n^3)$ C++ 代码 算法2 (单调队列优化) $O(n^2)$ 考虑优化上述 dp,发现状态转移方程中的 $\min$ 操作可以用单调队列优化,具体来说,我们维护一个单调递增的队列 $q$,其中 $q_i$ 表示第 $i$ 个位置的最小花费,那么对于状态 $f_{i,j}$,我们只需要找到 $q$ 中第一个大于等于 $f_{i-1,k}+c_1$ 的位置 $p$,然后 $f_{i,j}=q_p+\begin{cases}&\text{if }h_{i+1}>h_j\\c_2&\text{otherwise}\end{cases}$。 时间复杂度 $O(n^2)$ C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值