509 1137斐波那契数列

第一题,常规斐波那契数列,学到了很多东西,书上的递归其实是一种效率很低的做法,因为他重复计算了很多子问题,所以用自顶向下的备忘录法或者自底向上的动态规划法效果更好。

#include<iostream>
#include<vector>
using namespace std; 
class Solution {
//传统递归,耗时大
public:
    int fib(int n) {
        if (n == 0)return 0;
        else if (n == 1)return 1;
        else return fib(n - 1) + fib(n - 2);
    }
};
class Solution1 {
    //备忘录法
public:
    int fib(int n) {
        if (n < 1)return 0;
        vector<int>memo(n + 1, 0);
        return helper(memo, n);
    }
    int helper(vector<int>&memo, int n) {
    //这个&没写导致了bug
        if (n == 1 || n == 2)return 1;
        if (memo[n] != 0)return memo[n];
        memo[n] = helper(memo, n - 1) + helper(memo, n - 2);
        return memo[n];
    }
};
class Solution2 {
//动态规划法
public:
    int fib(int n) {
        if (n == 0)return 0;
        if (n == 1 || n == 2)return 1;
        vector<int>dp(n + 1, 0);
        dp[1] = dp[2] = 1;
        for (int i = 3; i <= n; i++) {
            dp[i] = dp[i - 1] + dp[i - 2];
        }
        return dp[n];
    }
};
int main() {
    Solution2 test;
    cout << test.fib(4);
}

第二题,三个数累加的斐波那契,思路类似。

#include<iostream>
#include<vector>
using namespace std;
class Solution {
//常规递归
public:
    int tribonacci(int n) {
        if (n == 0)return 0;
        else if (n == 1 || n == 2)return 1;
        else return tribonacci(n - 1) + tribonacci(n - 2) + tribonacci(n - 3);
    }
};
class Solution1{
    //备忘录法
public:
    int tribonacci(int n) {
        vector<int>memo(n + 1, 0);
        return helper(memo, n);
    }
    int helper(vector<int>&memo, int n) {
        if (n == 0)return 0;
        else if (n == 1 || n == 2)return 1;
        memo[1] = memo[2] = 1;
        if (memo[n] != 0)return memo[n];
        memo[n] = helper(memo, n - 1) + helper(memo, n - 2) + helper(memo, n - 3);
        return memo[n];
    }
};

class Solution2 {
    //动态规划法
public:
    int tribonacci(int n) {
        if (n == 0)return 0;
        else if (n == 1 || n == 2)return 1;
        vector<int>dp(n + 1, 0);
        dp[1] = dp[2] = 1;
        for (int i = 3; i <= n; i++) {
            dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3];
        }
        return dp[n];
    }
};
int main() {
    Solution1 test;
    cout << test.tribonacci(4);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值