DeepSeek作为一种新兴的人工智能技术,在实践过程中存在一些缺点和问题,以下是具体分析:
技术层面
模型性能与稳定性不足:
在处理复杂任务时,DeepSeek的代码生成能力表现不稳定,尤其是在复杂格式处理和深度逻辑推理方面,生成的代码可能忽略空行识别、文件名规范性等问题。
文本优化功能也存在逻辑偏差,偶现优化后内容与原意不符的情况。
在金融领域,DeepSeek存在“过度拟合历史数据”的问题,导致模型在实际应用中表现与回测结果相差较大。
技术债务与架构问题:
DeepSeek核心代码库中“临时解决方案”的占比高达34%,远超行业平均水平,且其分布式训练框架存在硬编码节点配置问题,随着业务发展可能导致算力扩展成本指数级增长。
从版本迭代日志来看,DeepSeek在2023年第二季度累计发布了47次热修复,其中12次涉及数据泄露漏洞,频繁的紧急更新给企业用户带来了沉重的兼容性调试负担。
数据隐私与安全问题:
DeepSeek的模型训练和数据处理方式存在一定的隐私和安全隐患,用户需要采取适当的预防措施。
在医疗领域,DeepSeek的命名实体识别错误率较高,且缺乏医疗数据分级保护机制,曾因遗漏关键过敏史字段引发医疗纠纷。
应用层面
行业适配性缺陷:
在金融领域,DeepSeek的模型在实盘运行阶段表现不稳定,无法为金融投资提供稳定可靠的策略支持。
在医疗领域,DeepSeek的准确率较低,且缺乏针对性的场景化套件。
用户体验与可接触性不足: