深入集成 LangChain4j:向量数据库、多模态 AI 与自定义插件开发
在上一篇博客中,我们讲解了如何在 Spring Boot 项目中集成 LangChain4j,实现 文档问答、对话记忆和工具调用 等功能。
本篇将继续深入,介绍如何 集成向量数据库(Vector Database) 以存储和检索嵌入数据,扩展多模态 AI 处理(文本 + 图像),以及 开发自定义 LangChain4j 插件。
1. 集成向量数据库(Vector Database)
向量数据库可用于存储 文档嵌入(Embeddings),然后根据用户输入检索最相关的信息,提高 AI 的知识检索能力。
1.1 添加 Milvus 依赖
Milvus 是一个流行的开源向量数据库,可以高效存储和检索向量数据。
在 pom.xml 中添加 Milvus 客户端 依赖:
<dependency>
<groupId>io.milvus</groupId>
<artifactId>milvus-sdk-java</artifactId>
<version>2.3.1</version>
</dependency>
1.2 配置 Milvus 客户端
创建 MilvusConfig 配置类:
package com.example.langchain4j.config;
import io.milvus.client.MilvusClient;
import io.milvus.client.MilvusServiceClient;
import io.milvus.param.ConnectParam;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
@Configuration
public class MilvusConfig {
@Bean
public MilvusClient milvusClient() {
return new MilvusServiceClient(
ConnectParam.newBuilder()
.withHost("localhost")
.withPort(19530)
.build()
);
}
}
1.3 存储和检索嵌入向量
创建 VectorDatabaseService,用于存储和检索文档向量。
package com.example.langchain4j.service;
import io.milvus.client.MilvusClient;
import io.milvus.param.collection.CreateCollectionParam;
import io.milvus

最低0.47元/天 解锁文章
2592

被折叠的 条评论
为什么被折叠?



