深入集成 LangChain4j:向量数据库、多模态 AI 与自定义插件开发

深入集成 LangChain4j:向量数据库、多模态 AI 与自定义插件开发

在上一篇博客中,我们讲解了如何在 Spring Boot 项目中集成 LangChain4j,实现 文档问答、对话记忆和工具调用 等功能。
本篇将继续深入,介绍如何 集成向量数据库(Vector Database) 以存储和检索嵌入数据,扩展多模态 AI 处理(文本 + 图像),以及 开发自定义 LangChain4j 插件


1. 集成向量数据库(Vector Database)

向量数据库可用于存储 文档嵌入(Embeddings),然后根据用户输入检索最相关的信息,提高 AI 的知识检索能力。

1.1 添加 Milvus 依赖

Milvus 是一个流行的开源向量数据库,可以高效存储和检索向量数据。

pom.xml 中添加 Milvus 客户端 依赖:

<dependency>
    <groupId>io.milvus</groupId>
    <artifactId>milvus-sdk-java</artifactId>
    <version>2.3.1</version>
</dependency>

1.2 配置 Milvus 客户端

创建 MilvusConfig 配置类:

package com.example.langchain4j.config;

import io.milvus.client.MilvusClient;
import io.milvus.client.MilvusServiceClient;
import io.milvus.param.ConnectParam;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@Configuration
public class MilvusConfig {
   
   

    @Bean
    public MilvusClient milvusClient() {
   
   
        return new MilvusServiceClient(
            ConnectParam.newBuilder()
                .withHost("localhost")
                .withPort(19530)
                .build()
        );
    }
}

1.3 存储和检索嵌入向量

创建 VectorDatabaseService,用于存储和检索文档向量。

package com.example.langchain4j.service;

import io.milvus.client.MilvusClient;
import io.milvus.param.collection.CreateCollectionParam;
import io.milvus
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值