1.控制系统的数学模型?
微分方程(在时域描述,自变量是t)、传递函数(在复数域描述,自变量是s)、频率响应函数(在频域描述,自变量是w)
2.简述微分方程、传递函数、频率响应函数之间的关系?
答:微分方程与传递函数是拉氏变换对,微分方程域与频率响应函数是傅式变换对,令传递函数中的s=jw可得到频率效应函数。
3.什么是传递函数?
答:零初始条件下,线性定常系统输出信号的拉氏变换与输入信号的拉氏变换的比值。
4.什么是控制系统的极点?什么是控制系统的零点?
答:控制系统的极点是指令传递函数分母为零得到的根;零点是指传递函数分子为零得到的根;如果令传递函数中s=0,那么传递函数的值为增益即G(0)。
5.传递函数的特点?
答:
①是以系统参数表示线性定常系统输出量与输入量之间关系的代数表达式;
②若系统的输入给定,则系统的输出完全取决于传递函数;
③实际的物理系统其传递函数的分母借此一定大于或等于分子的阶次;
④传递函数的量纲取决于系统的输入与输出,但传递函数仅取决于系统本身的结构及参数,但传递函数仅取决于系统本身的节后及参数,与系统的输入形式无关;
⑤传递函数不能描述系统的物理结构,不同系统可以具有相同的传递函数;
6.傅里叶变换和拉普拉斯变换的解释与区别?
答:
傅里叶变换可以理解为一种解决问题的方法,一种工具,一个连续的信号可以看作是一个小信号的叠加,傅里叶变换表示能够将满足一定条件的某个函数表示成三角函数或者他们的积分的线性组合;对一个信号做傅里叶变换可以得到其频域特性包括幅度和相位(幅度表示这个频率分量的大小,频域上的相位就是每个正弦波的相位);引入拉普拉斯变换的一个主要优点就是可采用传递函数代替微分方程来描述系统的特性;
傅里叶变换虽然好用,但有一个最大的问题是其存在的条件比较苛刻,在时域内绝对可积的信号才能存在傅里叶变换,拉普拉斯变换可以说是推广了这个而概念,在自然界中,指数信号是衰减最快的信号之一,对信号乘上指数信号后,很容易满足绝对可积的条件。傅里叶变换可看作是拉普拉斯变换的特殊形式,所乘指数信号为exp(0)。
7. 动态性能指标?
答:
①延迟时间,h(t)到稳态值一般的时间;
②上升时间:h(t)从10%到90%所用时间;
③峰值时间;
④调节时间,进入误差带且不超出误差带的最短时间;
⑤超调量;
8.稳态性能指标?
答:
稳态误差是系统控制精度或康扰动能力的一种度量,是指时间到无穷的时候,输出量与期望输出的偏差;
8.稳态误差的三要素?
答:
①输入信号的类别,即所需跟踪的基准信号;
②系统的开环增益K,它可以确定有差系统的稳态误差的大小;
③系统的无差度v,它可以确定能够跟踪的信号阶数;
9.控制系统的代数稳定性判断?
答:劳斯表中,如果第一列元素全部大于零,系统就是稳定的,否则系统是不稳定的;
10.根轨迹的定义?
答:系统的开环传递函数中某一参数变化时,系统闭环特征方程的根在s平面上变化的轨迹;
11.控制系统的根轨迹图分析?
答:
动态性能分析:
①确定系统闭环极点的分布于根轨迹增益变化时闭环极点的走向;
②有无s平面右半平面的闭环极点,如果有,则闭环系统不稳定,需要确定系统闭环稳定时系统增益的临界值;
③能否确定系统的主导极点的位置以及与其相对应的动态性能,如超调量与过渡时间等;
④除闭环主导极点外其他极点对于系统的影响如何;
稳定性能分析:
①系统的无差度可以由远点处开环极点的个数确定;
②系统的稳态误差分析可以由过根轨迹的闭环极点处的增益值确定有差系统的稳态误差大小;
12.什么是频率响应?
答:系统或环节对不同频率正弦输入信号的响应。输出的振幅和相位一般均不同于输入量,且随着输入信号频率的变化而变化。
13.频率特性的物理意义?
答:表征系统对不同频率正弦信号的浮现能力。频率特性分为幅频特性和相频特性。
14.用频率特性法分析系统稳定性?
答:利用开环幅相曲线和开环对数曲线判断闭环系统的稳定性。奈氏稳定判据,Z=P-2N;Z表示闭环特征根在s右半平面的个数;P表示开环极点在s右半平面的个数;N表示开环幅相曲线穿越-1之左实轴的次数;Z=0系统稳定;Z≠0系统不稳定;
15.稳定裕量?
答:幅相曲线和对数曲线相对于临界点的位置即偏离临界点的程度,反映系统的相对稳定性。
16.解释PID?
答:
①P是比例调节,系统一旦出现偏差,比例调剂立即产生调节作用用以减少偏差,比例作用越大,可以加快调节,减少误差,但是过大的比例使得系统的稳定性下降,甚至造成系统的不稳定;
②I是积分调节,使系统消除稳态误差,因为有误差,积分调节就进行,直至无差,积分调节停止,输出一常值;积分作用取决于积分常数T,T越小,积分作用就越强,反之亦然;加入积分调节可使系统稳定性下降,动态响应变慢;
③D是微分调节,微分作用反应系统偏差信号的变化率,具有预见性,能遇见偏差变化的趋势,因此能产生超前的控制作用,在偏差还没有形成之前,已被微分调节作用消除,因此可以改善系统的动态性能。在微分时间选择合适的情况下,可以减少超调,减少调节的时间。微分作用对噪声干扰有放大作用,因此过强的加微分调节,对系统抗干扰不利。此外微分反应的是变化率,输入没有变化时,微分作用输出为0,因此不能单独作用。