全微分的意义

转载自https://zhuanlan.zhihu.com/p/38967869
一元函数微分很容易理解,直观,但是推广到多维后,尽管教科书给出了严格定义,但总觉得中间有道坎,想不明白。本文用图形帮助大家直观理解全微分。

1.一元可微函数:

如果一元函数可微,则利用直线代替曲线估计函数值的变化,得到,
Δ y = f ′ ( x 0 ) Δ x + o ( Δ x ) \Delta y=f'\left( x_0 \right) \Delta x+o\left( \Delta x \right) Δy=f(x0)Δx+o(Δx)
在这里插入图片描述

2.那么推广到n元函数是否能得到形式一致的公式呢?

在这里插入图片描述

全微分形式:
在这里插入图片描述

几何解释:
一元函数用直线代替曲线,则n元函数用平面代替曲面,这个平面称为切平面。
为了方便,举例二元函数z=f(x,y),

曲面上一点A,经过此点分别做平行于xoz和yoz的平面,与空间平面相交得到两条空间曲线,
在这里插入图片描述
两条空间曲线分别做切线,u的斜率(y不变)即x偏导,v的斜率(x不变)即y偏导。
在这里插入图片描述
斜率的具体所示,请看下面的示意图:在这里插入图片描述
经过两条切线的平面即为切平面
在这里插入图片描述
全微分的精髓就是利用切平面去代替A点附近的曲面,如此一来
Δ z ≈ f x ( x 0 , y 0 ) Δ x + f y ( x 0 , y 0 ) Δ y \Delta z\approx f_x\left( x_0,y_0 \right) \Delta x+f_y\left( x_0,y_0 \right) \Delta y Δzfx(x0,y0)Δx+fy(x0,y0)Δy
示意图:
在这里插入图片描述
目前还有一个问题,切平面是通过两条特殊的切线得到的,那么是否经过此点的任意切线都在切平面内呢?答案是肯定的!
比如任意增加一个平行于z轴的平面,做相交曲线的切线,仍在切平面内:
在这里插入图片描述
从图中看到xoy平面内的三个方向得到的三个切线(方向导数)在同一个平面内。

证明:
在这里插入图片描述
可以这样理解,xoy平面内过(x0,y0)的任意直线经过线性变换肯定仍在一个平面内(线性变换的性质)。下面图帮助理解:
在这里插入图片描述

3.结论

  • 全微分是用切平面代替曲面
  • 全微分要求所有方向的切线均存在且均在一个平面内,因此有函数偏导存在,但是不存在全微分的情况。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值