如图所示,假设曲面
z
=
f
(
x
,
y
)
z=f(x,y)
z=f(x,y)上一小块
Δ
S
\Delta S
ΔS在xoy轴上的投影为矩形ABCD,由于取的块足够小,可以将其视为平行四边形。则
Δ
S
\Delta S
ΔS与
Δ
x
Δ
y
\Delta x \Delta y
ΔxΔy的关系可以视为平行四边形EFGH的面积与矩形ABCD面积之间的关系。
矩形
A
D
AD
AD的长度为
Δ
x
\Delta x
Δx(x的变化量),
A
B
AB
AB的长度为
Δ
y
\Delta y
Δy(y的变化量),则
S
A
B
C
D
=
Δ
x
Δ
y
S_{ABCD}=\Delta x\Delta y
SABCD=ΔxΔy
E
E
E点坐标为
(
x
,
y
,
f
(
x
,
y
)
)
(x,y,f(x,y))
(x,y,f(x,y)),
F
F
F点坐标为
(
x
,
y
+
Δ
y
,
f
(
x
,
y
+
Δ
y
)
)
(x,y+\Delta y,f(x,y+\Delta y))
(x,y+Δy,f(x,y+Δy)),其中
f
(
x
,
y
+
Δ
y
)
f(x,y+\Delta y)
f(x,y+Δy)可以使用线性近似,即
f
(
x
,
y
+
Δ
y
)
≈
f
(
x
,
y
)
+
Δ
y
⋅
f
y
′
f(x,y+\Delta y)\approx f(x,y)+\Delta y\cdot f_y^\prime
f(x,y+Δy)≈f(x,y)+Δy⋅fy′,则
F
F
F点坐标为
(
x
,
y
+
Δ
y
,
f
(
x
,
y
)
+
Δ
y
⋅
f
y
′
)
(x,y+\Delta y,f(x,y)+\Delta y\cdot f_y^\prime)
(x,y+Δy,f(x,y)+Δy⋅fy′),同理可得
H
H
H点的坐标为
(
x
+
Δ
x
,
y
,
f
(
x
,
y
)
+
Δ
x
⋅
f
x
′
)
(x+\Delta x,y,f(x,y)+\Delta x\cdot f_x^\prime)
(x+Δx,y,f(x,y)+Δx⋅fx′),则
E
F
→
=
(
0
,
Δ
y
,
Δ
y
⋅
f
y
′
)
\overrightarrow{EF}=\left( 0,\Delta y,\Delta y\cdot f_y' \right)
EF=(0,Δy,Δy⋅fy′)
E
H
→
=
(
Δ
x
,
0
,
Δ
x
⋅
f
x
′
)
\overrightarrow{EH}=\left( \Delta x,0,\Delta x\cdot f_x' \right)
EH=(Δx,0,Δx⋅fx′)
E
F
→
×
E
H
→
=
∣
i
^
j
^
k
^
0
Δ
y
Δ
y
⋅
f
y
′
Δ
x
0
Δ
x
⋅
f
x
′
∣
=
(
Δ
x
Δ
y
⋅
f
x
′
,
Δ
x
Δ
y
⋅
f
y
′
,
−
Δ
x
Δ
y
)
=
(
f
x
′
,
f
y
′
,
−
1
)
Δ
x
Δ
y
\overrightarrow{EF}\times \overrightarrow{EH}=\left| \begin{matrix} \widehat{i}& \widehat{j}& \widehat{k}\\ 0& \Delta y& \Delta y\cdot f_y'\\ \Delta x& 0& \Delta x\cdot f_x'\\ \end{matrix} \right|=\left( \Delta x\Delta y\cdot f_x',\Delta x\Delta y\cdot f_y',-\Delta x\Delta y \right) =\left( f_x',f_y',-1 \right) \Delta x\Delta y
EF×EH=∣∣∣∣∣∣i
0Δxj
Δy0k
Δy⋅fy′Δx⋅fx′∣∣∣∣∣∣=(ΔxΔy⋅fx′,ΔxΔy⋅fy′,−ΔxΔy)=(fx′,fy′,−1)ΔxΔy
Δ
S
=
∣
E
F
→
×
E
H
→
∣
=
(
f
x
′
)
2
+
(
f
y
′
)
2
+
1
Δ
x
Δ
y
\Delta S=\left| \overrightarrow{EF}\times \overrightarrow{EH} \right|=\sqrt{\left( f_x' \right) ^2+\left( f_y' \right) ^2+1}\ \Delta x\Delta y
ΔS=∣∣∣EF×EH∣∣∣=(fx′)2+(fy′)2+1 ΔxΔy
取微元
d
S
=
(
f
x
′
)
2
+
(
f
y
′
)
2
+
1
d
x
d
y
dS=\sqrt{\left( f_x' \right) ^2+\left( f_y' \right) ^2+1}\ dxdy
dS=(fx′)2+(fy′)2+1 dxdy