对面积的曲面积分中dS与dxdy的转换

如图所示,假设曲面 z = f ( x , y ) z=f(x,y) z=f(x,y)上一小块 Δ S \Delta S ΔS在xoy轴上的投影为矩形ABCD,由于取的块足够小,可以将其视为平行四边形。则 Δ S \Delta S ΔS Δ x Δ y \Delta x \Delta y ΔxΔy的关系可以视为平行四边形EFGH的面积与矩形ABCD面积之间的关系。
在这里插入图片描述
矩形 A D AD AD的长度为 Δ x \Delta x Δx(x的变化量), A B AB AB的长度为 Δ y \Delta y Δy(y的变化量),则
S A B C D = Δ x Δ y S_{ABCD}=\Delta x\Delta y SABCD=ΔxΔy

E E E点坐标为 ( x , y , f ( x , y ) ) (x,y,f(x,y)) (x,y,f(x,y)) F F F点坐标为 ( x , y + Δ y , f ( x , y + Δ y ) ) (x,y+\Delta y,f(x,y+\Delta y)) (x,y+Δy,f(x,y+Δy)),其中 f ( x , y + Δ y ) f(x,y+\Delta y) f(x,y+Δy)可以使用线性近似,即 f ( x , y + Δ y ) ≈ f ( x , y ) + Δ y ⋅ f y ′ f(x,y+\Delta y)\approx f(x,y)+\Delta y\cdot f_y^\prime f(x,y+Δy)f(x,y)+Δyfy,则 F F F点坐标为 ( x , y + Δ y , f ( x , y ) + Δ y ⋅ f y ′ ) (x,y+\Delta y,f(x,y)+\Delta y\cdot f_y^\prime) (x,y+Δy,f(x,y)+Δyfy),同理可得 H H H点的坐标为 ( x + Δ x , y , f ( x , y ) + Δ x ⋅ f x ′ ) (x+\Delta x,y,f(x,y)+\Delta x\cdot f_x^\prime) (x+Δx,y,f(x,y)+Δxfx),则
E F → = ( 0 , Δ y , Δ y ⋅ f y ′ ) \overrightarrow{EF}=\left( 0,\Delta y,\Delta y\cdot f_y' \right) EF =(0,Δy,Δyfy)
E H → = ( Δ x , 0 , Δ x ⋅ f x ′ ) \overrightarrow{EH}=\left( \Delta x,0,\Delta x\cdot f_x' \right) EH =(Δx,0,Δxfx)
E F → × E H → = ∣ i ^ j ^ k ^ 0 Δ y Δ y ⋅ f y ′ Δ x 0 Δ x ⋅ f x ′ ∣ = ( Δ x Δ y ⋅ f x ′ , Δ x Δ y ⋅ f y ′ , − Δ x Δ y ) = ( f x ′ , f y ′ , − 1 ) Δ x Δ y \overrightarrow{EF}\times \overrightarrow{EH}=\left| \begin{matrix} \widehat{i}& \widehat{j}& \widehat{k}\\ 0& \Delta y& \Delta y\cdot f_y'\\ \Delta x& 0& \Delta x\cdot f_x'\\ \end{matrix} \right|=\left( \Delta x\Delta y\cdot f_x',\Delta x\Delta y\cdot f_y',-\Delta x\Delta y \right) =\left( f_x',f_y',-1 \right) \Delta x\Delta y EF ×EH =i 0Δxj Δy0k ΔyfyΔxfx=(ΔxΔyfx,ΔxΔyfy,ΔxΔy)=(fx,fy,1)ΔxΔy
Δ S = ∣ E F → × E H → ∣ = ( f x ′ ) 2 + ( f y ′ ) 2 + 1   Δ x Δ y \Delta S=\left| \overrightarrow{EF}\times \overrightarrow{EH} \right|=\sqrt{\left( f_x' \right) ^2+\left( f_y' \right) ^2+1}\ \Delta x\Delta y ΔS=EF ×EH =(fx)2+(fy)2+1  ΔxΔy
取微元
d S = ( f x ′ ) 2 + ( f y ′ ) 2 + 1   d x d y dS=\sqrt{\left( f_x' \right) ^2+\left( f_y' \right) ^2+1}\ dxdy dS=(fx)2+(fy)2+1  dxdy

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值