【吴恩达深度学习】01_week1_quiz Introduction to deep learning

本文探讨了人工智能(AI)如何如同百年前的电力一样,正在深刻地变革各行各业。随着数据量的激增和计算能力的提升,AI在深度学习领域的应用日益广泛,从图像识别到自然语言处理,再到机器翻译,AI正以前所未有的速度推动创新。同时,快速迭代的AI模型和不断发展的算法使得解决复杂问题的能力不断提升,但即使经验丰富的工程师也需要多次尝试才能找到最优解决方案。此外,文章还强调了数据质量和计算资源在AI成功应用中的关键作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(1) What does the analogy “AI is the new electricity” refer to?
[A] AI runs on computers and is thus powered by electricity, but it is letting computers do things not possible before.
[B]AI is powering personal devices in our homes and offices, similar to electricity.
[C]Through the “smart grid”, AI is delivering a new wave of electricity.
[D] Similar to electricity starting about 100 years ago, AI is transforming multiple industries.

答案:D
解析:Started about 100 years ago, electricity had once transformed countless industries: transportation, manufacturing, healthcare, communications, and more.
AI will now bring about an equally big transformation.



(2)Which of these are reasons for Deep Learning recently taking off?(Check the two options that apply).
[A]Neural Networks are a brand new field.
[B]We have access to a lot more data.
[C]We have access to a lot more computational power.
[D]Deep learning has resulted in significant improvements in important applications such as online advertising, speech recognition, and image recognition.

答案:B,C
解析:Deep learning is taking off due to a large amount of data available through the digitization of the society, faster computation and innovation in the development of neural network algorithm.


(3)Recall this diagram of iterating over different ML ideas. Which of the statements below are true?(Check all that apply)
在这里插入图片描述
[A]Being able to try out ideas quickly allows deep learning engineers to iterate more quickly.
[B]Faster computation can help speed up how long a team takes to iterate to a good idea.
[C]It is faster to train ton a big dataset than s small dataset.
[D]Recent progress in deep learning algorithms has allowed us to train good models faster(even without changing the CPU/GPU hardware)

答案:A,B,D
解析:训练集越大训练速度越慢


(4)When an experienced deep learning engineer works on a new problem, they can usually use insight from previous problems to train a good model on the first try, without needing to iterate multiple times through different models. True/False?
答案:False
解析: 可能之前的经验有帮助,但几乎没有人可以在第一次训练的情况下就获得一个最佳模型


(5)Which one of these plots re[resents a ReLU activation function?
[A]在这里插入图片描述
[B]在这里插入图片描述
[C]在这里插入图片描述
[D]在这里插入图片描述

答案:C


(6)Images for cat recognition is an example of “structured” data, because it is represented as a structured array in a computer. True/False?
答案:False
解析:音频、图像这类属于非结构化数据


(7)A demographic dataset with statistics on different cities’ population, GDP per capita economic growth is an example of “unstructured” data because it contaions data coming from different sources. True/False?
答案:False
解析:是否是结构化数据与数据来源无关


(8)Why is an RNN (Recurrent Neural Network) used for machine translation, say translating English to French?(Check all that apply)
[A]It can be trained as a supervised learning problem.
[B]It is strictly more powerful than a Convolutional Neural Network(CNN).
[C]It is applicable when the input/output is a sequence(e.e.,a sequence of words).
[D]RNNs represent the recurrent process of Idea->Code->Experiment->Idea->…

答案:A,C
解析:对于B选项,在图像领域中使用CNN更合适,在对于序列数据时,使用RNN更合适。
对于D选项,对于RNN的细节,具体见后续课程



(9)In this diagram which we hand-draw in lecture, what do the horizontal axis(x-axis) and vertical axis(y-axis) represent?
在这里插入图片描述
[A]x-axis is the amount of data, y-axis is the size of the model you train.
[B]x-axis is the input to the algorithm, y-axis is outputs.
[C]x-axis is the amount of data,y-axis(vertical axis) is the performance of the algorithm.
[D]x-axis is the performance of the algorithm, y-axis(vertical axis) is the amount of data.

答案:C


(10)Assuming the trends described in the previous question’s figure are accurate (and hoping you got the axis labels right), which of the follow are true?(check all that apply)
[A]Increasing the training set size generally does not hurt an algorithm\s performance, and it may help significantly.
[B]Decreasing the size of a neural network generally does not hurt an algorithm’s performance, and it may help significantly.
[C]Increasing the size of a neural network generally does not hurt an algorithm’s performance, and it may help significantly.
[D]Decreasing the training set size generally does not hurt an algorithm’s performance, and it may help significantly.

答案:A,C
解析:增加数据集的大小和网络的大小不会影响算法的性能,并且可能对算法的性能有显著的帮助

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值