若xn>0,且x(n+1)/xn>1-1/n(n=1,2,...),证明级数∑xn发散

题干

若 x n > 0 , 且 x n + 1 x n > 1 − 1 n    ( n = 1 , 2 , . . . ) , 证 明 级 数 ∑ n = 1 ∞ x n 发 散 若x_n>0,且\frac{x_{n+1}}{x_n}>1-\frac{1}{n}\,\,\left( n=1,2,... \right) ,证明级数\sum_{n=1}^{\infty}{x_n}发散 xn>0xnxn+1>1n1(n=1,2,...)n=1xn

解答

∵ x n + 1 x n > 1 − 1 n = n − 1 n \because \frac{x_{n+1}}{x_n}>1-\frac{1}{n}=\frac{n-1}{n} xnxn+1>1n1=nn1
∴ x 3 x 2 > 1 2   ,   x 4 x 3 > 2 3   ,   . . .   ,   x n x n − 1 > n − 2 n − 1 \therefore \frac{x_3}{x_2}>\frac{1}{2}\ ,\ \frac{x_4}{x_3}>\frac{2}{3}\ ,\ ...\ ,\ \frac{x_n}{x_{n-1}}>\frac{n-2}{n-1} x2x3>21 , x3x4>32 , ... , xn1xn>n1n2
∵ x n x n − 1 ⋅ x n − 1 x n − 2 ⋯ x 3 x 2 > n − 2 n − 1 ⋅ n − 3 n − 2 ⋯ 1 2 \because \frac{x_n}{x_{n-1}}\cdot \frac{x_{n-1}}{x_{n-2}}\cdots \frac{x_3}{x_2}>\frac{n-2}{n-1}\cdot \frac{n-3}{n-2}\cdots \frac{1}{2} xn1xnxn2xn1x2x3>n1n2n2n321
∴ x n x 2 > 1 n − 1   ( n > 3 ) \therefore \frac{x_n}{x_2}>\frac{1}{n-1}\ \left( n>3 \right) x2xn>n11 (n>3)
∴ x n > x 2 ⋅ 1 n − 1   ( n > 3 ) \therefore x_n>x_2\cdot \frac{1}{n-1}\ \left( n>3 \right) xn>x2n11 (n>3)
∴ ∑ n = 3 ∞ x n > x 2 ⋅ ∑ n = 2 ∞ 1 n \therefore \sum_{n=3}^{\infty}{x_n}>x_2\cdot \sum_{n=2}^{\infty}{\frac{1}{n}} n=3xn>x2n=2n1
由于 ∑ n = 2 ∞ 1 n 为调和级数,所以 ∑ n = 2 ∞ 1 n 发散 \text{由于}\sum_{n=2}^{\infty}{\frac{1}{n}}\text{为调和级数,所以}\sum_{n=2}^{\infty}{\frac{1}{n}}\text{发散} 由于n=2n1为调和级数,所以n=2n1发散
调和级数也就是 p = 1 p=1 p=1时的p级数,证明见正项级数的积分审敛法,p级数的敛散性
∴ ∑ n = 3 ∞ x n 发散 ⇒ ∑ n = 1 ∞ x n 发散  \therefore \sum_{n=3}^{\infty}{x_n}\text{发散}\Rightarrow \sum_{n=1}^{\infty}{x_n}\text{发散\ } n=3xn发散n=1xn发散 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值