小果大qmt聚宽系统,聚宽策略自动对接qmt

连接https://gitee.com/li-xingguo11111/joinquant_trader_bigqmt

介绍

小果大qmt聚宽系统 小果大 QMT 聚宽跟单系统是一种在金融量化交易领域具有一定创新性和实用性的交易辅助工具,以下是具体介绍:

系统概述

该系统旨在实现聚宽平台的策略与 QMT 平台的对接,使投资者能够在 QMT 平台上跟踪和执行聚宽平台上的优质策略,充分发挥两个平台的优势。 主要功能

策略同步:能够将聚宽平台上的策略实时同步到 QMT 平台,投资者无需手动修改代码或策略,即可在 QMT 上使用聚宽的策略进行交易。 多种跟单模式:支持成交模式、持股模式等多种跟单方式,满足不同投资者的需求。例如,成交模式跟单可按照策略的成交信号进行跟单操作;持股模式跟单则可根据策略的持仓情况来调整自己的持仓。 数据获取与处理:可以从聚宽平台获取相关数据,并在 QMT 平台上进行处理和分析,为交易决策提供数据支持。 风险控制:具备一定的风险控制功能,如设置止损、止盈等参数,帮助投资者控制交易风险。 账户管理:可以对多个交易账户进行管理和监控,方便投资者进行资金管理和风险分散。 优势特点

提高交易效率:通过自动化的跟单系统,减少了人工操作的时间和成本,提高了交易的效率和准确性。 降低技术门槛:对于不熟悉编程和量化交易的投资者来说,使用该系统可以更容易地利用聚宽平台上的优质策略进行交易,降低了参与量化交易的技术门槛。 策略多样性:聚宽平台上拥有丰富的策略资源,投资者可以根据自己的需求和风险偏好选择合适的策略进行跟单,增加了投资的多样性。 灵活性:系统具有一定的灵活性,投资者可以根据自己的需求对跟单参数进行调整和优化,以适应不同的市场环境和交易需求。 应用场景

适合个人投资者:对于那些希望通过量化交易获取收益,但缺乏编程能力和量化交易经验的个人投资者来说,小果大 QMT 聚宽跟单系统提供了一个简单便捷的解决方案。 专业投资机构:一些专业的投资机构也可以利用该系统来拓展投资策略的来源,提高交易的效率和效果,同时降低研发成本。 综上所述,小果大QMT聚宽跟单系统是一款功能强大、易于使用的量化交易辅助工具,它能够帮助投资者更好地利用聚宽平台上的优质策略进行交易,提高交易效率和盈利能力

#encoding:gbk
'''
声明:源代码只用作学习使用,不做商业用途
小果聚宽跟单交易系统
作者:小果
时间:20240120
教程 https://gitee.com/li-xingguo11111/joinquant_trader_miniqmt
实盘时间设置在下面的text里面改
"交易时间段":4,
"交易开始时间":9,
"交易结束时间":14,
测试时间设置
"时间设置":"时间设置********",
"交易时间段":8,
"交易开始时间":0,
"交易结束时间":24,
"是否参加集合竞价":"否",
"开始交易分钟":0,
实盘需要把txet下面的参数是否测试改成否
"是否开启测试":"否",
下面的参数测试的时候改成否,实盘改成是
"是否开启临时id记录":"是"
高频使用循环模式,低频使用定时
'''
import pandas as pd
import numpy as np
import talib
import requests
import json
from datetime import datetime
import math
import time
text={
	"账户":"账户",
	"账户类型":"STOCK",
	"聚宽跟单":"跟单原理",
	"服务器设置":"服务器跟单设置",
	"服务器":"http://124.220.32.224",
	"端口":"8025",
	"测试说明":"开启测试就是选择历史交易不开启就是选择今天的数据",
	"是否开启测试":"是",
	"测试数量":200,
	"跟单设置":"跟单设置***********",
	"账户跟单比例":0.5,
	"多策略用逗号隔开":"多策略用逗号隔开********",
	"组合名称":["小果测试"],
	"组合授权码":["xg_test"],
	"组合跟单比例":[1],
	"不同策略间隔更新时间":0,
	"下单默认说明":"默认/金额/数量",
	"下单模式":"默认",
	"下单值":1000,
	"时间设置":"时间设置********",
	"交易时间段":4,
	"交易开始时间":9,
	"交易结束时间":14,
	"是否参加集合竞价":"否",
	"开始交易分钟":0,
	"是否开启临时id记录":"是"
}
#记录临时id,避免循环下没有用的单子
class a:
	pass
a=a()
a.log_id=[]
def init(c):
	#账户
	c.account=text['账户']
	#账户类型
	c.account_type=text['账户类型']
	c.url=text['服务器']
	c.port=text['端口']
	print('小果服务器提供数据支持************服务器{} 端口{}'.format(c.url,c.port))
	#定时模式
	#c.run_time("update_all_data","1nDay","2024-07-25 09:45:00")
	#c.run_time("update_all_data","1nDay","2024-07-25 14:45:00")
	#循环模式3秒
	c.run_time("update_all_data","3nSecond","2024-07-25 13:20:00")
	#c.run_time("tarder_test","3nSecond","2024-07-25 13:20:00")
	print(get_account(c,c.account,c.account_type))
	print(get_position(c,c.account,c.account_type))
	#print(update_all_data(c))
def handlebar(c):
	pass
def tarder_test(c):
	print('交易测试***************')
	stock='513100.SH'
	amount=100
	maker='交易测试'
	passorder(23, 1101, c.account, stock, 5, 0, amount, maker,1,maker,c)
	
def get_del_buy_sell_data(c,name='测试1',password='123456'):
	'''
	处理交易数据获取原始数据
	'''
	test=text['是否开启测试']
	url=text['服务器']
	port=text['端口']
	now_date=str(datetime.now())[:10]
	xg_data=xg_jq_data(url=url,port=port,password=password)
	info=xg_data.get_user_data(data_type='用户信息')
	df=xg_data.get_user_data(data_type='实时数据')
	print('用户信息')
	print(info)
	if df.shape[0]>0:
		stats=df['数据状态'].tolist()[-1]
		if stats==True:
			df['证券代码']=df['股票代码'].apply(lambda x:str(x).split('.')[0]+'.SH' if str(x).split('.')[-1]=='XSHG' else str(x).split('.')[0]+'.SZ')
			df['数据长度']=df['证券代码'].apply(lambda x: len(str(x)))
			df['订单添加时间']=df['订单添加时间'].apply(lambda x :str(x)[:10])
			df=df[df['数据长度']>=6]
			df['交易类型']=df['买卖'].apply(lambda x: 'buy' if x==True else 'sell')
			df=df.drop_duplicates(subset=['股票代码','下单数量','买卖','多空'],keep='last')
			df['组合名称']=str(name)
			df['组合授权码']=str(password)
			df['策略名称']=str('聚宽跟单')
			df['订单ID']=df['订单ID'].astype(str)
			df['证券代码']=df['证券代码'].apply(lambda x: str(x))
			df['投资备注']=df['组合授权码']+','+df['订单ID']
			if test=='是':
				print('开启测试模式,实盘记得关闭')
				df=df
			else:
				df=df[df['订单添加时间']==now_date]
		else:
			df=pd.DataFrame()
	else:
		df=pd.DataFrame()
	if df.shape[0]>0:
		print('组合 {} 策略授权码 {} {}今天跟单数据*********************'.format(name,password,now_date))
		#print(df)
	else:
		print('组合 {} 策略授权码 {} {}今天没有跟单数据*********************'.format(name,password,now_date))
	return df
def get_trader_data(c,name='测试',password='123456',zh_ratio=0.1):
	'''
	获取交易数据
	组合的跟单比例
	'''
	test=text['是否开启测试']
	adjust_ratio=text['账户跟单比例']
	is_open_id_log=text['是否开启临时id记录']
	#读取跟单数据
	df=get_del_buy_sell_data(c,name=name,password=password)
	try:
		df['证券代码']=df['证券代码'].apply(lambda x: '0'*(6-len(str(x)))+str(x))
	except:
		pass
	trader_log=get_order(c,c.account,c.account_type)
	now_date=str(datetime.now())[:10]
	#剔除撤单废单
	not_list=[54,57]
	if trader_log.shape[0]>0:
		trader_log['撤单']=trader_log['委托状态'].apply(lambda x: '是' if x in not_list else '不是')
		trader_log=trader_log[trader_log['撤单']=='不是']
	else:
		trader_log=trader_log
	if trader_log.shape[0]>0:
		trader_log['证券代码']=trader_log['证券代码'].apply(lambda x: '0'*(6-len(str(x)))+str(x))
		trader_log['组合授权码']=trader_log['投资备注'].apply(lambda x: str(x).split(',')[0])
		trader_log['订单ID']=trader_log['投资备注'].apply(lambda x: str(x).split(',')[-1])
		trader_log['订单ID']=trader_log['订单ID'].astype(str)
		if test=='是':
			trader_log=trader_log
		else:
			trader_log=trader_log
		trader_log['组合授权码']=trader_log['组合授权码'].astype(str)
		trader_log_1=trader_log[trader_log['组合授权码']==password]
		if trader_log_1.shape[0]>0:
			trader_id_list=trader_log_1['订单ID'].tolist()
		else:
			trader_id_list=[]
	else:
		trader_id_list=[]
	if is_open_id_log=='是':
		for trader_id in a.log_id:
			trader_id_list.append(trader_id)
	else:
		pass
	trader_id_list=list(set(trader_id_list))
	
	if df.shape[0]>0:
		df['组合授权码']=df['组合授权码'].astype(str)
		#df['订单ID ']=df['订单ID'].astype(str)
		df=df[df['组合授权码']==password]
		if df.shape[0]>0:
			df['账户跟单比例']=adjust_ratio
			df['组合跟单比例']=zh_ratio
			df['交易检查']=df['订单ID'].apply(lambda x: '已经交易' if x in trader_id_list else '没有交易')
			df=df[df['交易检查']=='没有交易']
			amount_list=[]
			if df.shape[0]>0:
				for stock,amount,trader_type in zip(df['证券代码'].tolist(),df['下单数量'].tolist(),df['交易类型'].tolist()):
					try:
						price=get_price(c,stock=stock)
						test=text['是否开启测试']
						test_amount=text['测试数量']
						down_type=text['下单模式']
						down_value=text['下单值']
						if test=='是':
							value=test_amount*price
						else:
							if down_type=='默认':
								value=price*amount*adjust_ratio*zh_ratio
							elif down_type=='数量':
								value=price*down_value*adjust_ratio*zh_ratio
							elif down_type=='金额':
								value=down_value
							else:
								value=price*amount*adjust_ratio*zh_ratio
						if trader_type=='buy':
							try:
								trader_type,amount,price=order_stock_value(c,c.account,c.account_type,stock,value,'buy')
								print(trader_type,amount,price)
								if trader_type=='buy' and amount>=10:
									amount=adjust_amount(c,stock=stock,amount=amount)
									amount_list.append(amount)
								else:
									amount_list.append(0)
							except Exception as e:
								print('组合{} 组合授权码{} {}买入有问题可能没有资金'.format(name,password,stock))
								amount_list.append(0)
						elif trader_type=='sell':
							try:
								trader_type,amount,price=order_stock_value(c,c.account,c.account_type,stock,value,'sell')
								if trader_type=='sell' and amount>=10:
									amount=adjust_amount(c,stock=stock,amount=amount)
									amount_list.append(amount)
								else:
									amount_list.append(0)
							
							except Exception as e:
									
								print('组合{} 组合授权码{} {}卖出有问题可能没有持股'.format(name,password,stock))
								amount_list.append(0)
							
						else:
							print('组合{} 组合授权码{} {}未知的交易类型'.format(name,password,stock))
					
					except Exception as e:
						print(e,stock,'有问题*************')
						amount_list.append(0)
					
				df['数量']=amount_list
				not_trader=df[df['数量']<=0]
				#数量为0的不进入下单记录
				df=df[df['数量']>=10]
				#df=df[df['数量']>=0]
				print('下单股票池))))))))))))))))))))))))')
				print(df)
				print('下单数量为0的标的可能没有持股,可能账户没有资金等待下次成交########################################################')
				print(not_trader)
				trader_log=pd.concat([trader_log,df],ignore_index=True)
				trader_log=trader_log.drop_duplicates(subset=['订单添加时间','订单ID','组合授权码','组合名称'],keep='last')
			else:
				print('{}组合没有需要下单标度******************'.format(name))
				df=pd.DataFrame()
		else:
			print('{}没有这个组合*************'.format(name))
			df=pd.DataFrame()
			
	else:
		print('{}交易股票池没有数据*************'.format(name))
		df=pd.DataFrame()
	return df
def start_trader_on(c,name='测试1',password='123456',zh_ratio=0.1):
	'''
	开始下单
	'''
	is_open_id_log=text['是否开启临时id记录']
	df=get_trader_data(c,name,password=password,zh_ratio=zh_ratio)
	try:
		df['证券代码']=df['证券代码'].apply(lambda x: '0'*(6-len(str(x)))+str(x))
	except:
		pass
	if df.shape[0]>0:
		df['证券代码']=df['证券代码'].astype(str)
		#print(df['证券代码'])
		df['证券代码']=df['证券代码'].apply(lambda x: '0'*(6-len(str(x)))+str(x))
		#先卖在买
		sell_df=df[df['交易类型']=='sell']
		if sell_df.shape[0]>0:
			for stock,amount,maker, in zip(sell_df['证券代码'].tolist(),sell_df['数量'].tolist(),sell_df['投资备注'].tolist()):
				try:
								
					price=get_price(c,stock)
					passorder(24, 1101, c.account, str(stock), 5, 0, int(amount), str(maker),1,str(maker),c)
					print('组合{} 卖出标的{} 数量{} 价格{}'.format(name,stock,amount,price))
					if  is_open_id_log=='是':
						trader_id=str(maker).split(',')[-1]
						a.log_id.append(trader_id)
					else:
						pass
				
				except Exception as e:
					print(e)
					print('组合{} {}卖出有问题'.format(name,stock))			
		else:
			print('{}组合没有符合调参的卖出数据'.format(name))
		buy_df=df[df['交易类型']=='buy']
		if buy_df.shape[0]>0:
			for stock,amount,maker, in zip(buy_df['证券代码'].tolist(),buy_df['数量'].tolist(),buy_df['投资备注'].tolist()):
				try:
		
					price=get_price(c,stock)
					passorder(23, 1101, c.account, str(stock), 5, 0, int(amount), str(maker),1,str(maker),c)
					#passorder(23, 1101, c.account, stock, 5, 0, int(amount), '',1,'',c)
					print('组合{} 买入标的{} 数量{} 价格{}'.format(name,stock,amount,price))
					if  is_open_id_log=='是':
						trader_id=str(maker).split(',')[-1]
						a.log_id.append(trader_id)
					else:
						pass
				
				except Exception as e:
					print(e)
					print('组合{} {}买入有问题'.format(name,stock))
				
		else:
			print('{}组合没有符合调参的买入数据'.format(name))
	else:
		print('{}组合没有符合调参数据'.format(name))
	#print(a.log_id)
def update_all_data(c):
	'''
	更新策略数据
	'''
	if check_is_trader_date_1():
		name_list=text['组合名称']
		password_list=text['组合授权码']
		ratio_list=text['组合跟单比例']
		update_time=text['不同策略间隔更新时间']
		for name,password,ratio in zip(name_list,password_list,ratio_list):
			start_trader_on(c,name=name,password=password,zh_ratio=ratio)
			time.sleep(update_time*60)
	else:
		print('跟单{} 目前不是交易时间***************'.format(datetime.now()))
def order_stock_value(c,accountid,datatype,stock,value,trader_type):
	'''
	价值下单函数
	'''
	price=get_price(c,stock)
	hold_stock=get_position(c,accountid,datatype)
	if hold_stock.shape[0]>0:
		hold_stock=hold_stock[hold_stock['持仓量']>=10]
		if hold_stock.shape[0]>0:
			hold_df=hold_stock[hold_stock['证券代码']==stock]
			if hold_df.shape[0]>0:
				hold_amount=hold_df['持仓量'].tolist()[-1]
				av_amount=hold_df['可用数量'].tolist()[-1]
			else:
				hold_amount=0
				av_amount=0
		else:
			hold_amount=0
			av_amount=0
	else:
		hold_amount=0
		av_amount=0
	account=get_account(c,accountid,datatype)
	av_cash=account['可用金额']
	amount=value/price
	if str(stock)[:2] in ['11','12']:
		amount=int(amount/10)*10
	else:
		amount=int(amount/100)*100
	if trader_type=='buy':
		if av_cash>=value and amount>=10:
			print('金额下单可以资金{}大于买入金额{} 买入{} 价格{} 数量{}'.format(av_cash,value,stock,price,amount))
			return 'buy',amount,price
		else:
			print('金额下单可以资金{}小于买入金额{} 不买入{} 价格{} 数量{}'.format(av_cash,value,stock,price,amount))
			return '','',price 
	elif trader_type=='sell':
		if av_amount>=amount and amount>=10:
			print('金额下单 持有数量{} 可用数量{} 大于卖出数量{} 卖出{} 价格{} 数量{}'.format(hold_amount,av_amount,amount,stock,price,amount))
			return 'sell',amount,price
		elif av_amount<amount and av_amount>=10:
			print('金额下单 持有数量{} 可用数量{} 小于卖出数量{},可以数量大于10 卖出{} 价格{} 数量{}'.format(hold_amount,av_amount,amount,stock,price,amount))
			return 'sell',amount,price
		else:
			print('金额下单 持有数量{} 可用数量{} 小于卖出数量{},不卖出{} 价格{} 数量{}'.format(hold_amount,av_amount,amount,stock,price,amount))
			return 'sell',amount,price
	else:
		print('金额下单未知的交易类型{}'.format(stock))
		return '',amount,price
	
def buy(c,stock,price,amount,name):
	'''
	买入函数
	'''
	passorder(23, 1101, c.account, str(stock), 5, 0, amount,name,1,name,c)
def sell(c,stock,price,amount,name):
	'''
	自定义卖出函数
	'''
	passorder(24, 1101, c.account, str(stock), 5, 0, amount,name,1,name,c)
def get_price(c,stock):
	'''
	获取最新价格
	'''
	tick=c.get_full_tick(stock_code=[stock])
	tick=tick[stock]
	price=tick['lastPrice']
	return price
def adjust_amount(c,stock='',amount=''):
	'''
	调整数量
	'''           
	if stock[:3] in ['110','113','123','127','128','111'] or stock[:2] in ['11','12']:
		amount=math.floor(amount/10)*10
	else:
		amount=math.floor(amount/100)*100
	return amount
def check_is_trader_date_1():
	'''
	检测是不是交易时间
	'''
	trader_time=text['交易时间段']
	start_date=text['交易开始时间']
	end_date=text['交易结束时间']
	start_mi=text['开始交易分钟']
	jhjj=text['是否参加集合竞价']
	if jhjj=='是':
		jhjj_time=15
	else:
		jhjj_time=30
	loc=time.localtime()
	tm_hour=loc.tm_hour
	tm_min=loc.tm_min
	wo=loc.tm_wday
	if wo<=trader_time:
		if tm_hour>=start_date and tm_hour<=end_date:
			if tm_hour==9 and tm_min<jhjj_time:
				return False
			
			elif tm_min>=start_mi:
				return True
			else:
				return False
		else:
			return False    
	else:
		print('周末')
		return False
#获取账户总权益m_dBalance
def get_account(c,accountid,datatype):
	'''
	获取账户数据
	'''
	accounts = get_trade_detail_data(accountid, datatype, 'account')
	result={}
	for dt in accounts:
		result['总资产']=dt.m_dBalance
		result['净资产']=dt.m_dAssureAsset
		result['总市值']=dt.m_dInstrumentValue
		result['总负债']=dt.m_dTotalDebit
		result['可用金额']=dt.m_dAvailable
		result['盈亏']=dt.m_dPositionProfit
	return result
#获取持仓信息{code.market:手数}
def get_position(c,accountid,datatype):
	'''
	获取持股数据
	'''
	positions = get_trade_detail_data(accountid,datatype, 'position')
	data=pd.DataFrame()
	print('持股数量{}'.format(len(positions)))
	if len(positions)>0:
		df=pd.DataFrame()
		try:
			for dt in positions:
				df['股票代码']=[dt.m_strInstrumentID]
				df['市场类型']=[dt.m_strExchangeID]
				df['证券代码']=df['股票代码']+'.'+df['市场类型']
				df['证券名称']=[dt.m_strInstrumentName]
				df['持仓量']=[dt.m_nVolume]
				df['可用数量']=[dt.m_nCanUseVolume]
				df['成本价']=[dt.m_dOpenPrice]
				df['市值']=[dt.m_dInstrumentValue]
				df['持仓成本']=[dt.m_dPositionCost]
				df['盈亏']=[dt.m_dPositionProfit]
				data=pd.concat([data,df],ignore_index=True)
			
		except Exception as e:
			print('获取持股隔离股票池有问题')
			data=pd.DataFrame()
	else:
		data=pd.DataFrame()
	return data 
def get_order(c,accountid,datatype):
	'''
	获取委托
	'''
	data=pd.DataFrame()
	orders = get_trade_detail_data(accountid,datatype, 'order')
	print('委托数量{}'.format(len(orders)))
	if len(orders)>0:
		df=pd.DataFrame()
		for o in orders:
			df['股票代码']=[o.m_strInstrumentID]
			df['市场类型']=[o.m_strExchangeID]
			df['证券代码']=df['股票代码']+'.'+df['市场类型']
			df['买卖方向']=[o.m_nOffsetFlag]
			df['委托数量']=[o.m_nVolumeTotalOriginal]
			df['成交均价']=[o.m_dTradedPrice]
			df['成交数量']=[o.m_nVolumeTraded]
			df['成交金额']=[o.m_dTradeAmount]
			df['投资备注']=[o.m_strRemark]
			df['委托状态']=[o.m_nOrderStatus]
			data=pd.concat([data,df],ignore_index=True)
	else:
		data=pd.DataFrame()
	return data
def get_deal(c,accountid,datatype):
	'''
	获取成交
	'''
	data=pd.DataFrame()
	deals = get_trade_detail_data(account, 'stock', 'deal')
	print('成交数量{}'.format(len(deals)))
	if len(deals):
		df=pd.DataFrame()
		for dt in deals:
			df['股票代码']=[dt.m_strInstrumentID]
			df['市场类型']=[dt.m_strExchangeID]
			df['证券代码']=df['股票代码']+'.'+df['市场类型']
			df['证券名称']=[dt.m_strInstrumentName]
			df['买卖方向']=[dt.m_nOffsetFlag]
			df['成交价格']=[dt.m_dPrice]
			df['成交数量']=[dt.m_nVolume]
			df['成交金额']=[dt.m_dTradeAmount]
			data=pd.concat([data,df],ignore_index=True)
	else:
		data=pd.DataFrame()
class xg_jq_data:
	def __init__(self,url='http://124.220.32.224',port=8025,password='123456'):
		'''
		获取服务器数据
		'''
		self.url=url
		self.port=port
		self.password=password
	def get_user_data(self,data_type='用户信息'):
		'''
		获取使用的数据
		data_type='用户信息','实时数据',历史数据','清空实时数据','清空历史数据'
		'''
		url='{}:{}/_dash-update-component'.format(self.url,self.port)
		headers={'Content-Type':'application/json'}
		data={"output":"joinquant_trader_table.data@63d85b6189e42cba63feea36381da615c31ad8e36ae420ed67f60f3598efc9ad",
			"outputs":{"id":"joinquant_trader_table","property":"data@63d85b6189e42cba63feea36381da615c31ad8e36ae420ed67f60f3598efc9ad"},
			"inputs":[{"id":"joinquant_trader_password","property":"value","value":self.password},
				{"id":"joinquant_trader_data_type","property":"value","value":data_type},
				{"id":"joinquant_trader_text","property":"value","value":"\n               {'状态': 'held', '订单添加时间': 'datetime.datetime(2024, 4, 23, 9, 30)', '买卖': 'False', '下单数量': '9400', '已经成交': '9400', '股票代码': '001.XSHE', '订单ID': '1732208241', '平均成交价格': '10.5', '持仓成本': '10.59', '多空': 'long', '交易费用': '128.31'}\n                "},
				{"id":"joinquant_trader_run","property":"value","value":"运行"},
				{"id":"joinquant_trader_down_data","property":"value","value":"不下载数据"}],
				"changedPropIds":["joinquant_trader_run.value"],"parsedChangedPropsIds":["joinquant_trader_run.value"]}
		res=requests.post(url=url,data=json.dumps(data),headers=headers)
		text=res.json()
		df=pd.DataFrame(text['response']['joinquant_trader_table']['data'])
		return df
		

03-12
<think>好的,用户的问题是关于QMT(Quantitative Trading Platform)、quantmod和trader的。首先需要明确用户的具体需求。QMT是迅投公司开发的量化交易平台,主要用于A股市场。而quantmod是R语言中一个用于量化金融分析的包,常用于数据获取、可视化和技术分析。用户可能想知道如何将quantmod与QMT结合使用,或者如何在QMT中实现类似quantmod的功能。 需要确认QMT是否支持R语言的集成。查阅资料发现,QMT主要支持Python和VBA,而quantmod是R的包,因此直接集成可能有难度。可能需要通过其他方式在QMT中使用R代码,比如调用外部脚本或者使用中间件进行通信。 接下来,考虑用户提到的“trader”,可能是指实际的交易执行部分。用户可能希望了解如何在QMT中实现策略回测和自动化交易。需要查找QMT的API文档,了解其交易函数和回测框架的结构。例如,QMT提供XtTrader和XtQuant等模块,用于连接交易接口和数据获取。 然后,整合信息。用户可能需要将quantmod的分析结果应用到QMT的交易策略中。可能的解决方案包括:使用R进行数据分析后导出结果,再用Python读取并执行交易;或者使用Python的类似库(如pandas、TA-Lib)替代quantmod,直接在QMT策略中实现分析。 此外,需要检查QMT的API是否支持实时数据获取和订单提交。例如,XtQuant提供历史数据获取函数get_market_data,而XtTrader处理订单。代码示例可能涉及初始化交易接口、订阅数据、计算指标、生成交易信号等步骤。 最后,确保回答符合格式要求:分步骤、无第一人称、代码和公式正确格式化,并在最后添加相关问题。相关问题应围绕QMT的功能扩展、quantmod替代方案以及策略部署问题展开。</think>QMT(迅投量化交易平台)与quantmod的结合应用涉及数据获取、策略开发和交易执行三个核心环节。以下是实现量化交易的关键方法: --- **数据对接与处理** 通过XtQuant模块获取实时行情数据,使用Python的pandas进行数据处理: ```python from xtquant import xtdata data = xtdata.get_market_data(['000001.SZ'], period='1d') df = data.to_dataframe().reset_index() ``` **技术指标计算** 替代quantmod的技术分析方法,使用TA-Lib实现MACD指标计算: ```python import talib df['macd'], df['signal'], _ = talib.MACD(df['close'], fastperiod=12, slowperiod=26, signalperiod=9) ``` **交易策略实现** 构建双均线策略并通过XtTrader执行: ```python from xtquant.xttrader import XtQuantTrader class Strategy: def on_tick(self): short_ma = df['close'].rolling(5).mean() long_ma = df['close'].rolling(20).mean() if short_ma.iloc[-1] > long_ma.iloc[-1]: XtQuantTrader.order_stock('000001.SZ', 'BUY', 1000) else: XtQuantTrader.order_stock('000001.SZ', 'SELL', 1000) ``` --- **回测验证** 使用QMT内置回测框架验证策略有效性,核心评价指标包括: - 年化收益率:$R_{annual} = (1 + R_{total})^{252/N} - 1$ - 夏普比率:$Sharpe = \frac{E[R_p - R_f]}{\sigma_p}$ - 最回撤:$MDD = \max_{0≤i<j≤T}(P_i - P_j)/P_i$ ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xg_quant

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值