一创聚宽 停止服务,量化替代方案:ptrade专业版/Qmt

开通Ptrade Python量化接口 
目前不少在A股做量化的大部分使用tushare,优矿,米筐,聚宽等等,无论教程,还是实际操作,基本没见有教怎么用程序下单,实盘交易的。
而退而求其次使用按键精灵,模拟点击交易软件进行点击下单,非常不稳定,无法判断下单后是否成交,也无法实时获取行情数据。如果使用tushare或者新浪接口数据,扫描一次全市场的行情用时很久且不稳定,等扫描结束,再下单,此时价格可能已经是几分钟前的了,且此类接口调用次数多是会被封IP的。

笔者使用的是券商提供的量化软件:Ptrade。是恒生电子研发的提供给机构使用的程序化交易软件。提供策略回测,下单API接口,实时行情获取,并且使用的开发语言python,易于上手。

策略回测与实盘交易

研究页面

研究页面,熟悉python jupyter notebook的朋友对这个界面肯定很熟悉。

研究的页面实际就运行你逐行输出调试程序,了解每个函数的具体使用,或者你策略的中途结果调试。

 
回测策略

实际代码需要在回测策略里面写,写完后确定无误,就可以放在仿真环境下真实运行。如果你运行得到的结果很满意,那么就可以直接部署到实盘服务器上。实盘服务器是在券商那边,不需要个人购买服务器,也不需要本地开着这个Ptrade,就是说不需要在个人电脑上一直开着跑,你的最终代码和程序是在券商服务器上部署与运行,除非有报错异常停止,不然在你不暂停或者停止的前提下,可以一直运行下去。


条件满足后下单

可视化量化

同时也提供一些常见的现成的量化策略,选中后只要鼠标点点点也能够自动化跑这些策略了,当然里面很多参数都可以用鼠标点点点修改。

 
接口文档也非常详细:

 
一些常见策略代码:

集合竞价追涨停策略
def initialize(context):
    # 初始化此策略

    # 设置我们要操作的股票池, 这里我们只操作一支股票

    g.security = '600570.SS'

    set_universe(g.security)

    #每天9:23分运行集合竞价处理函数

    run_daily(context, aggregate_auction_func, time='9:23')  

def aggregate_auction_func(context):

    stock = g.security

    #最新价

    snapshot = get_snapshot(stock)

    price = snapshot[stock]['last_px']

    #涨停价

    up_limit = snapshot[stock]['up_px']

    #如果最新价不小于涨停价,买入

    if float(price) >= float(up_limit):

        order(g.security, 100, limit_price=up_limit)

    

def handle_data(context, data):

    pass

双均线策略
def initialize(context):
    # 初始化此策略

    # 设置我们要操作的股票池, 这里我们只操作一支股票

    g.security = '600570.SS'

    set_universe(g.security)

    pass

    

#当五日均线高于十日均线时买入,当五日均线低于十日均线时卖出

def

### QMTPTrade 的特性比较 #### 、概述 对于量化初学者而言,选择合适的量化交易平台至关重要。市场上有许多优秀的平台可供选择,例如、优矿、掘金、QMTPTrade 等[^1]。本文重点分析 QMTPTrade 这两款专业的量化交易平台。 --- #### 二、QMT 平台简介及其优势 QMT 是由北京睿智融科控股股份有限公司开发的款专业量化交易平台,全称为 Quick Model Trade 极速策略交易软件。它集成了行情显示、投资研究、策略编写、自动交易等功能模块,并支持极速交易和智能算法交易[^2]。 以下是 QMT 的主要特点: - **广泛覆盖的证券公司** QMT 基本上覆盖了国内 A 级以上的证券公司,如国金证券等,这使得用户的接入更加便捷。 - **丰富的交易品种支持** QMT 支持几乎所有常见的金融市场产品,包括但不限于股票、期货、期权、两融、港股通、可转债以及 ETF 等。这种全面的支持使其非常适合需要跨市场操作的专业投资者[^3]。 - **强大的技术支持** - 提供低延迟交易功能,适用于高频交易场景。 - 支持多语言编程(如 Python),方便用户自定义复杂策略。 - 数据支持强大,可以轻松获取并处理各类金融数据,例如通过配置 Python 环境来下载可转债基本信息或其他第三方依赖包[^4]。 --- #### 三、PTrade 平台简介及其优势 虽然关于 PTrade 的具体描述较少,但从现有资料来看,PTrade 同样是款专注于量化的交易平台,尤其受到个人投资者的喜爱。它的核心特点是简单易用且成本较低,适合刚接触量化交易的新手群体。 相比 QMTPTrade 更注重用户体验优化,在以下几个方面表现突出: - **轻量化设计** 对于不需要过多高级功能的小型团队或个体投资者来说,PTrade 可能是个更经济实惠的选择。 - **灵活部署方式** 用户可以根据自己的需求快速搭建运行环境,而无需担心复杂的硬件适配问题。 然而需要注意的是,相较于 QMT 能够提供更为精细的数据服务与多样化的产品选项,PTrade 在某些特定领域可能存在局限性,尤其是在涉及跨国资产管理和衍生品交易时显得力不从心。 --- #### 四、两者对比总结表 | 特性 | QMT | PTrade | |---------------------|-----------------------------------------------------------------------------------------|--------------------------------| | 开发商 | 北京睿智融科控股股份有限公司 | 不详 | | 主要适用人群 | 专业机构和个人高端玩家 | 初学阶段及中小型散户 | | 所支持券商范围 | 多数 AA 类及以上 | 较窄 | | 投资标的种类 | 包含股票,期指,权证等多种 | 主要是单市场的标准化商品 | | 编程接口 | 完整API文档加多种脚本语言 | API相对简化 | | 性价比 | 功能齐全但价格较高 | 成本低廉 | 综上所述,如果目标是构建套完整的程序化交易体系,则应优先考虑选用像QMT这样的综合性解决方案;而对于预算有限又希望尝试自动化操作的朋友来讲,Ptrade不失为种不错的选择. --- ### 示例代码:如何在 QMT 中加载 Python 环境 以下是段简单的示例代码,展示如何在 QMT 中设置 Python 环境以执行基础数据分析任务。 ```python import pandas as pd def load_data(): """模拟加载本地 CSV 文件""" df = pd.read_csv('example.csv') return df.describe() if __name__ == "__main__": result = load_data() print(result) ``` 上述代码片段展示了如何利用 Pandas 库读取外部文件并生成统计摘要信息。此方法同样可以在实际项目中扩展应用到更多维度上的探索性工作当中去. --- ####
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值