#视频截取的模型
训练开发的视频截取器,公司给发的电脑,在这里记录一下环境配置的过程,由于已经安装了cuda等环境(我也不想重新下载啦),就利用11.7做这个练习。以后遇到问题在解决。
首先给出参考经验帖。[这个电脑是RTX3050+win11]
(https://blog.csdn.net/x242510/article/details/123069195)
##检查cuda是否安装成功的方法:
###1.使用shell命令行(nvidia-smi)
Thu Dec 15 14:25:46 2022
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 517.48 Driver Version: 517.48 CUDA Version: 11.7 |
|-------------------------------+----------------------+----------------------+
| GPU Name TCC/WDDM | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 NVIDIA GeForce ... WDDM | 00000000:01:00.0 Off | N/A |
| N/A 43C P3 17W / N/A | 0MiB / 4096MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| No running processes found |
+-----------------------------------------------------------------------------+
###方法二:找到Nvidia control Panel
##2. 运行时API(Runtime API)
命令行输入nvcc -V
也可以参考这篇文章cuda基础。
#安装过程
参考这两篇文章(Win11和Win11 + RTX3060 配置Cuda等深度学习环境),先按照别人的经验走一遍,在最后搞自己的版本,就像大一开始装电脑一样,没接触的东西多尝试几次。
##环境变量配置
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\include
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\lib
环境检查
cd C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7
cd extras\demo_suite
.\bandwidthTest.exe
##下载相对应的python包,不想出问题的话,按照一步步来。我在测试学习3.9的环境,一起学习吧。
>>> import tensorflow as tf
>>> tf.reduce_sum(tf.random.normal([1000, 1000])
结果是这个东西
WARNING:tensorflow:From <stdin>:1: is_gpu_available (from tensorflow.python.framework.test_util) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.config.list_physical_devices('GPU')` instead.
2022-12-16 08:54:52.073841: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX AVX2
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-12-16 08:54:55.279269: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1510] Created device /device:GPU:0 with 1666 MB memory: -> device: 0, name: NVIDIA GeForce RTX 3050 Laptop GPU, pci bus id: 0000:01:00.0, compute capability: 8.6
这个显示一下GPU,这里还没有搞懂怎么回事(需要搞清楚)
>>> tf.config.list_physical_devices('GPU')
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
>>> version = tf.version
>>> gpu_ok = tf.test.is_gpu_available()
打印自己的GPU,这样应该没问题啦
>>> print("tf version:",version,"\nuse GPU",gpu_ok)
tf version: <module 'tensorflow._api.v2.version' from 'C:\\Program Files\\Anaconda\\lib\\site-packages\\tensorflow\\_api\\v2\\version\\__init__.py'>
use GPU True