Win11环境下显卡驱动、CUDA和cuDNN的安装
文章目录
前言
本文主要针对从事图像处理、计算机视觉研究,且需要深度学习算法以辅助计算的研究人群。目前大多数的深度学习算法均需要调用电脑专用GPU,最常用的深度学习架构有PyTorch,而CUDA和cuDNN则是利用电脑GPU计算必装的配置。
一、准备工作
在配置CUDA和cuDNN之前,需要确保自身的电脑配置有NVIDIA显卡,且已经安装了驱动。如果未安装驱动,见下文:
1.查看自身显卡驱动版本
在win11底部的搜索栏中,搜索设备管理器。
2.根据显卡信息下载对应的驱动程序
下载地址:NVIDIA驱动程序
如何选择对应的类型?
- 产品类型为Geforce;产品系列根据自己的设备,笔记本电脑一般为Notebooks;产品对应于上述的设备管理器;操作系统和语言适配自己即可。
- 选择好之后,点击搜索可以看到两类驱动程序,一个是NVIDIA Studio,一个是GeForce Game Ready。Studio较为专业,适合干活,打游戏较多的话可以选择Game Ready。如果都有需求的话,比较推荐Studio版本。
3.查看安装是否成功
通过Win + R,输入cmd进入终端,输入:
nvidia-smi
看到如下信息,即证明显卡驱动已经安装完成。
同时上述信息也可以看到设备显卡的版本号,对应于Driver Version:566.14;CUDA最高支持版本对应于CUDA Version:12.7。
二、CUDA的安装
1.查找适配版本
如何查找适配版本?点击下方链接,进入Table 3:CUDA Toolkit and Corresponding Driver Versions中。
版本适配链接
根据自己的Driver Version和CUDA Version选择最终要安装的CUDA版本,同时也要考虑到自己要做的任务,例如深度学习中PyTorch架构支持的CUDA版本,一般CUDA>=11.8。
2.CUDA的下载
CUDA的下载链接如下:
下载链接 CUDA
点击界面右下角Resources中的Archive of Previous CUDA Releases,可以查看其他的CUDA版本。
选择好版本后,依次选择该版本下的:
- Operating System操作系统:Windows
- Architecture架构:x86_64
- Version版本:11
- Installer Type安装类型:local
如下图所示。
注意:
- CUDA的安装不同于Anaconda的安装,不需要添加环境变量,系统会帮你设置完成。
- 首次下载,自定义安装全都打勾;非首次,只打第一个勾。
- 如何卸载,安装新的版本:下图中对应安装版本的四个全部卸载,以及所添加的12.1相关path环境变量等。(从控制面板中的程序中卸载)
3.查看安装是否成功
安装完后进行重启,通过Win + R,输入cmd进入终端,输入:
nvcc -V
如果出现下面的页面,即证明安装成功。
二、cuDNN的安装
1.查找适配版本
查找链接
根据下图寻找适配自身CUDA的cuDNN,点击进行安装。
2.cuDNN的下载
点击后,进入如下界面,选择适配的系统,例如选择Local Installer for Windows (Zip)(即Windows系统)。
点击下载,此时需要注册NVIDIA账户,登陆后即可下载文件。
2.cuDNN的配置
1.文件解压后,如下图所示。
2.找到CUDA的安装路径,路径默认在
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA下面,进入文件夹,如下图所示。
接下来将CUDNN对应bin、include、lib三个文件与CUDA对应的bin、include、lib进行合并,即将cuDNN内文件全部复制到CUDA对应文件夹内!!!
- 需要注意的是,lib文件夹中是x86文件夹,此时需要把cuDNN中lib文件夹里面的x86文件夹的内容复制到CUDA中lib文件夹中的x86文件夹。
3.在此电脑中,右键点击属性,找到win11系统下的高级系统设置,如下图所示。
而后点击“环境变量”,点击“系统变量”中的Path,点击编辑,将C:\Program Files\NVIDIA Computing Toolkit\CUDA\v12.1\lib和v12.1\libnvvp以及v12.1\include进行添加,即下图中红色划线部分,最后点击“确定”完成配置。
3.查看安装是否成功
进入C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1\extras\demo_suite中,可以发现如下两个文件。
那么在文件夹中,右键点击在终端打开。首先执行如下命令:
.\deviceQuery.exe
出现下图:
接着执行下一条命令:
.\bandwidthTest.exe
出现下图,即可证明cuDNN安装成功。
总结
以上为深度学习、神经网络代码调试运行的环境配置,涉及显卡驱动的安装,CUDA以及cuDNN的配置。最后介绍一下两者的联系和区别。
1.CUDA是NVIDIA开发的并行计算平台和编程模型,允许开发者使用C/C++、Python等语言直接调用GPU进行通用计算。它通过将任务分解为并行线程,利用GPU的数千个核心加速计算。
2.cuDNN是专为深度学习设计的GPU加速库,基于CUDA平台,提供高度优化的常见神经网络操作(如卷积、池化)。它是主流深度学习框架(如TensorFlow、PyTorch)的底层加速引擎。
3.cuDNN基于CUDA构建,需先安装CUDA才能使用。即CUDA提供通用GPU计算能力,cuDNN在CUDA基础上封装深度学习专用操作,使框架无需重复实现底层优化。