概率论与数理统计(一)知识框架

笔记 专栏收录该内容
1 篇文章 0 订阅

概率论与数理统计(一)

知识点框架建立

这学期新修的一门课程,简单的做个知识点概括。结合上课老师所讲和自身所理解的内容,罗列出基本重要的知识点。有助于后期的复习。

一、课程的性质与任务

这门课程是通识教育必修课,系统阐述了概率论和数理统计的基本内容、理论和应用方法。

概率论与数理统计是研究随机现象统计规律的数学学科,它从数量侧面研究随机现象的统计规律性,是近似数学的重要分支,应用非常广泛,具有独特的思维和学习方法。

二、课程的基本内容及要求

(一).概率论的基本概念

1.学习内容

(1) 随机试验,样本空间;

(2)频率与概率,等可能概型;

(3)条件概率,独立性。

2.重点难点

重点:概率的概念、性质及运算;事件独立性。

难点:事件的等价性变换;选用正确公式进行概率计算;事件独立性的概念及应用。

3. 重点掌握

(1)了解频率和概率的定义;

(2)理解随机事件及样本空间的概念,事件独立性的概念;

(3)掌握概率的基本性质,古典概率的条件及定义,用事件的独立性进行概率计算的方法。

(4)会计算一般的古典概率,用条件概率、乘法公式、全概率公式、贝叶斯公式公式及二项概
率公式作概率计算。

(二)随机变量及其分布

1.学习内容

(1)随机变量,离散型随机变量及其分布律;

(2)随机变量的分布函数,连续型随机变量及其概率分布;

(4)随机变量函数的分布。

2.重点难点

重点:随机变量的概念;分布函数的概念;几种常见的随机变量的分布。

难点:随机变量的概念;分布函数的概念;随机变量函数的分布。

3.重点掌握

(1)理解随机变量的概念,离散型随机变量及其分布律的概念和性质,连续型随机变量及其概率密度的概念和性质,随机变量函数及其概率分布:

(2)掌握正态分布及查表求概率的方法;

(3)掌握随机变量的分布函数及其性质:几种常见的随机变量的分布:

(4)会利用随机变量分布律、概率密度以及分布函数计算有关事件的概率。

(三)多维随机变量及其分布

1.学习内容

(1)二维随机变量,边缘分布;

(2)条件分布,相互独立的随机变量;

(3)两个随机变量的函数的分布。

2.重点难点

重点:二维随机变量的概念;边缘分布;条件分布及相互独立的随机变量。

难点:边缘分布;条件分布及两个随机变量函数的分布。

3.重点掌握

(1)理解二维随机变量的概念,二维随机变量的联合分布的概念、性质,两个随机变量x,Y的独立性;

(2)掌握二维离散型随机变量的分布律,边缘分布律,条件分布律;二维连续型随机变量的概率密度,边缘概率密度;

(3)掌握二维随机变量独立的条件:

(4)会求二维连续型随机变量的条件概率密度,两个独立随机变量的简单函数的分布。

(四)随机变量的数字特征

1.学习内容

(1)数学期望;

(3)协方差和相关系数。

2.重点难点

重点:随机变量的数学期望、方差。

难点:随机变量的数学期望、方差,协方差及相关系数。

3.重点掌握

(1)了解协方差、相关系数的概念;

(2)理解随机变量的数学期望、方差,随机变量函数的数学期望。

(3)掌握常用分布的数学期望、方差的性质。

(4)会计算随机变量及其函数的数学期望、方差。

(五)样本及抽样分布

1.学习内容

(1)总体与样本;

(2)抽样分布。

2.重点难点

重点:总体、个体、样本和统计量的概念;常用统计量及其性质。

难点:求统计量的分布及独立性的判定。

3.重点掌握

(1)了解x2分布,t分布,F分布的定义、性质及这些分布的分位点,正态总体的常用统计量的分布;

(2)理解总体、个体、样本等概念;

(3)掌握样本均值及样本方差的计算;

(六)参数估计

1.学习内容

(1)点估计;

(2)估计量的优良性准则;

(3)区间估计。

(4)正态总体均值与方差的区间估计。

2.重点难点

重点:求估计量两种基本方法;评价估计量优良性的标准。

难点:极大似然估计法。

3.重点掌握

(1)了解区间估计的概念;

(2)理解点估计的概念,估计量的无偏性、有效性;

(3)掌握矩估计法及最大似然估计法;

(4)会验证无偏性和有效性,求单个正态总体均值与方差的置信区间,求两个正态总体的均值差和方差比的置信区间。

知识点还在拼凑中,有需要补充的大家可以直说(虚心请教)。每部分的知识点后期也会坚持的进行总结,进步一点点!给知识比个赞👍🏻

  • 0
    点赞
  • 0
    评论
  • 1
    收藏
  • 打赏
    打赏
  • 扫一扫,分享海报

©️2022 CSDN 皮肤主题:深蓝海洋 设计师:CSDN官方博客 返回首页

打赏作者

Tongzqa

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值