线性回归与偏置项的作用分析

随便写写,帮助记忆了。有错请指正。资料来源【侵删】:https://www.bilibili.com/video/BV1PN4y1V7d9/?p=3&spm_id_from=pageDriver&vd_source=fe02fe347edc06900dd8e09389ef779d

1. 线性回归的基本模型

线性回归的目标是通过线性方程来拟合一组数据点,从而描述自变量(如年龄、工资等)和因变量(如收入、房价等)之间的关系。其模型可以写成以下形式:

h_{\theta }(x) = \theta_{0} + \theta_{1}x_{1} + \theta_{2}x_{2}

其中:

  • h_{\theta}(x) 表示通过线性回归模型预测的输出值(即因变量的估计值)。
  • \theta{_{0}} 是偏置项(bias),它代表模型的截距(即当所有输入变量为0时,输出的预测值)。
  • \theta_{1}, \theta_{2} 是模型的参数,分别表示自变量 x_{1}(如年龄)和 x_{2}​(如工资)对预测结果的影响。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值