确定性信号**和**随机信号**通过线性系统的处理方式的区别

涉及确定性信号随机信号通过线性系统的处理方式的区别,特别是它们在频域中的表示形式和系统频率响应对信号影响的不同。这确实与输入信号的性质有关(是确定性的还是随机的)。

1. 确定性信号通过线性系统:卷积关系

对于一个确定性信号 x ( t ) x(t) x(t),当它通过线性系统时,输出信号 y ( t ) y(t) y(t) 可以表示为输入信号与系统冲激响应 h ( t ) h(t) h(t)卷积

y ( t ) = x ( t ) ∗ h ( t ) y(t) = x(t) * h(t) y(t)=x(t)h(t)

在频域中,卷积可以通过傅里叶变换表示为乘法

Y ( f ) = H ( f ) X ( f ) Y(f) = H(f) X(f) Y(f)=H(f)X(f)

这里:

  • X ( f ) X(f) X(f) 是输入信号 x ( t ) x(t) x(t) 的傅里叶变换;
  • H ( f ) H(f) H(f) 是线性系统的频率响应(即系统冲激响应的傅里叶变换);
  • Y ( f ) Y(f) Y(f) 是输出信号 y ( t ) y(t) y(t) 的傅里叶变换。

因此,对于确定性信号,系统频率响应 H ( f ) H(f) H(f) 和输入信号的频率分量直接相乘,输出信号的频率分量是 H ( f ) X ( f ) H(f) X(f) H(f)X(f)

2. 随机信号通过线性系统:功率谱密度与自相关函数

对于随机信号,情况有所不同。随机信号的频率特性通常通过**功率谱密度(PSD, Power Spectral Density)**来描述,而不是直接使用傅里叶变换 X ( f ) X(f) X(f)

假设输入信号是白高斯噪声(随机过程),其功率谱密度 G x ( f ) G_x(f) Gx(f) 是平坦的,即在所有频率上具有相同的能量。当这种信号通过一个带限线性滤波器时,输出信号的功率谱密度 G y ( f ) G_y(f) Gy(f) 可以表示为输入信号的功率谱密度与滤波器频率响应模平方的乘积:

G y ( f ) = ∣ H ( f ) ∣ 2 G x ( f ) G_y(f) = |H(f)|^2 G_x(f) Gy(f)=H(f)2Gx(f)

这里的 ∣ H ( f ) ∣ 2 |H(f)|^2 H(f)2 表示滤波器对每个频率分量能量的影响。功率谱密度反映的是信号的能量分布,滤波器的频率响应影响的是信号的能量(而不是幅度),所以我们需要使用 ∣ H ( f ) ∣ 2 |H(f)|^2 H(f)2 而不是 H ( f ) H(f) H(f) 来描述输出信号的功率谱密度。

总结:对于随机信号,我们需要使用功率谱密度来描述信号的频率特性,而不是直接使用傅里叶变换。因此,系统频率响应的影响表现为模平方 ∣ H ( f ) ∣ 2 |H(f)|^2 H(f)2,因为这是功率谱密度中的能量关系。对于确定性信号,只涉及幅度,所以直接使用 H ( f ) H(f) H(f)

3. 时域的自相关函数与频域的功率谱密度之间的关系

对于随机信号,系统对信号的影响不仅可以通过功率谱密度表示,也可以通过自相关函数来表示。系统对随机信号的自相关函数的影响是输入信号自相关函数 R x x ( t ) R_{xx}(t) Rxx(t) 和系统冲激响应自相关函数 R h h ( t ) R_{hh}(t) Rhh(t) 的卷积:

R y y ( t ) = R h h ( t ) ∗ R x x ( t ) R_{yy}(t) = R_{hh}(t) * R_{xx}(t) Ryy(t)=Rhh(t)Rxx(t)

自相关函数和功率谱密度之间通过维纳-辛钦定理联系,功率谱密度是自相关函数的傅里叶变换。输入信号的功率谱密度 G x ( f ) G_x(f) Gx(f) 和输出信号的功率谱密度 G y ( f ) G_y(f) Gy(f) 通过系统的频率响应 H ( f ) H(f) H(f) ∣ H ( f ) ∣ 2 |H(f)|^2 H(f)2 相联系:

G y ( f ) = ∣ H ( f ) ∣ 2 G x ( f ) G_y(f) = |H(f)|^2 G_x(f) Gy(f)=H(f)2Gx(f)

4. 确定性信号 vs 随机信号:关键区别

  • 确定性信号:通过线性系统时,频域中的关系是 Y ( f ) = H ( f ) X ( f ) Y(f) = H(f) X(f) Y(f)=H(f)X(f),系统频率响应 H ( f ) H(f) H(f) 直接影响信号的每个频率分量。

  • 随机信号:通过线性系统时,描述信号频率特性的方式是功率谱密度,输出信号的功率谱密度与系统频率响应的模平方 ∣ H ( f ) ∣ 2 |H(f)|^2 H(f)2 成正比。这是因为功率谱密度反映的是信号的能量分布,而滤波器对信号能量的影响是通过频率响应模平方体现的。

5. 为什么随机信号用 ∣ H ( f ) ∣ 2 |H(f)|^2 H(f)2 而确定性信号用 H ( f ) H(f) H(f)

这两个形式的不同之处在于:

  • 确定性信号的处理只需要关注信号的频率成分和幅度,因此频率响应直接作用在信号的每个频率上,表现为 H ( f ) H(f) H(f)

  • 随机信号的处理则需要关注信号的能量,因此我们使用功率谱密度来表示信号的能量分布。由于滤波器对信号能量的影响是通过模平方来表示的,所以功率谱密度的变化由 ∣ H ( f ) ∣ 2 |H(f)|^2 H(f)2 决定。

6. 总结

  • 确定性信号:通过线性系统时,频域中的输出为 Y ( f ) = H ( f ) X ( f ) Y(f) = H(f) X(f) Y(f)=H(f)X(f),系统直接作用在信号的频率成分上。

  • 随机信号:通过线性系统时,频域中的输出为 G y ( f ) = ∣ H ( f ) ∣ 2 G x ( f ) G_y(f) = |H(f)|^2 G_x(f) Gy(f)=H(f)2Gx(f),系统对信号能量的影响通过频率响应的模平方体现,反映在信号的功率谱密度上。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值