通过MLE来估计逻辑回归模型的参数

要通过最大似然估计(Maximum Likelihood Estimation, MLE) 来估计逻辑回归模型的参数 w w w,我们可以按照以下步骤进行。最大似然估计的目标是找到一组参数,使得在给定数据的情况下,模型输出的概率尽可能匹配实际的观测值。

1. 写出模型的似然函数(Likelihood Function)

对于逻辑回归模型,假设我们有 N N N 个样本,每个样本的数据由 x i x_i xi 表示,其标签 y i ∈ { 0 , 1 } y_i \in \{0, 1\} yi{ 0,1} 表示这个样本的类别。逻辑回归模型的输出是类别 y = 1 y = 1 y=1 的概率 p ( y = 1 ∣ x i ) p(y = 1 | x_i) p(y=1∣xi),用逻辑函数 σ ( ⋅ ) \sigma(\cdot) σ() 表示为:
p ( y i = 1 ∣ x i ) = σ ( w ⊤ ϕ ( x i ) ) = 1 1 + e − w ⊤ ϕ ( x i ) p(y_i = 1 | x_i) = \sigma(w^\top \phi(x_i)) = \frac{1}{1 + e^{-w^\top \phi(x_i)}} p(yi=1∣xi)=σ(wϕ(xi))=1+ewϕ(xi)1
那么,对于类别 y = 0 y = 0 y=0 的概率为:
p ( y i = 0 ∣ x i ) = 1 − σ ( w ⊤ ϕ ( x i ) ) = e − w ⊤ ϕ ( x i )

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值