动态情感识别模型的概念

动态情感识别模型的概念

在情感识别中,我们通常需要分析面部、声音等多种信息源,并且情感在表达上是有时间性的,也就是在一定时间内会有变化。举例来说,一个人可能在几秒内从高兴变为平静或者从平静变为生气,因此,为了更好地识别情感,必须考虑这种“动态”变化。

动态情感识别模型的结构

我们构建的模型结构分为两个部分:

  1. 静态特征提取器:负责从每一帧图像中提取情感特征。
  2. 时间聚合模块:处理连续的帧,将这些特征整合起来,形成对一段时间内情感的完整判断。

在这个模型中,静态特征提取器会在预训练的数据集上训练好,能够识别图像中的情感特征。之后,时间聚合模块会处理多帧的特征,这样模型就可以判断整段时间内的情感变化,而不仅仅是单帧的情感。

不同的时间聚合方法

  1. 函数聚合方法:我们可以在一段时间内(比如2秒)计算一些统计值,比如平均值、最小值、最大值等,将这些统计特征用于情感判断。这种方法简单,但不能很好地捕捉情感的细微变化。

  2. 循环神经网络(RNN):RNN 在 FER(情感识别)领域被广泛应用,它可以依次处理序列数据,因此特别适合于处理时间序列,能够记住前面的信息来影响后面的判断。

  3. 基于 Transformer 的模型:近年来,Transformer 成为了更受欢迎的时间聚合方法,尤其在情感识别中。Transformer 采用“自注意力机制”,即它会根据每一帧的特征来判断其与其他帧的关系,可以更好地理解情感在时间上的变化。

本文中的模型设计

在本研究中,选择了基于 Transformer 的方法作为时间聚合的主要手段。具体来说,这个动态情感识别模型包含以下几个部分:

  1. 静态特征提取器:先在多个情感识别数据集上预训练,微调后再固定(冻结)在 AffWild2 数据集的帧上进行微调,以确保它在训练动态模型时不会改变。

  2. Transformer 层:静态特征提取器每帧输出256维特征,这些特征输入到3层 Transformer 编码器中。每层 Transformer 有8个头(注意力机制的参数),dropout 设置为0.1(即有10%的随机节点被忽略,以防止过拟合)。

  3. 位置编码:在 Transformer 中添加位置编码,用来让模型“知道”特征的时间顺序,比如帧与帧之间的时间关系。

统计方法对比

作为对比,研究人员还设计了一种较简单的基于统计的方法:

  • 通过一个固定的2秒窗口(非重叠)来计算每个窗口内的平均值、最小值和最大值。
  • 利用核极限学习机(KELM)来处
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值