在经典力学中,如果一个粒子的总能量小于势垒的高度,它是绝对无法穿过这个势垒的;然而,在量子力学中,情况变得不同。
1. 隧穿效应的概念
在量子力学中,电子被描述为一种概率波(即波函数),它可以以概率的形式“穿透”一个能量高于它自身总能量的势垒。这种现象叫做隧穿效应。虽然势垒内电子的总能量 E E E 小于势能 V 0 V_0 V0,导致其动能为负值,但电子仍然有一定的概率可以穿过势垒,这就是隧穿的本质。
2. 为什么可以穿过势垒?
当电子进入势垒区域时,由于 E < V 0 E < V_0 E<V0,它的波函数在势垒内不再振荡,而是呈指数衰减的形式 。虽然波函数衰减,但它并没有完全归零。这意味着电子仍然在势垒的另一侧具有非零的波函数,从而在势垒后有一定的 概率 被检测到。这种概率很小,但不是零。
3. 举例说明
假设电子的总能量 E = 5 eV E = 5 \, \text{eV} E=5eV,而势垒的势能 V 0 = 10 eV V_0 = 10 \, \text{eV} V0=10eV,电子在势垒内的波函数呈指数衰减。但即便如此,波函数会延伸到势垒的另一侧。具体来说,波函数 ψ ( x ) \psi(x) ψ(x) 的形式是:
ψ ( x ) = A e − κ x \psi(x) = A e^{-\kappa x} ψ(x)=Ae−κx
其中 κ = 2 m ( V 0 − E ) ℏ 2 \kappa = \sqrt{\frac{2m(V_0 - E)}{\hbar^2}} κ=ℏ22m(V0−E),决定了波函数衰减的速率。衰减速率越慢,波函数就越可能延伸到势垒的另一侧。因此,虽然电子在势垒内部的存在概率随距离迅速减小,但在势垒的另一端仍有一定的存在概率。
4. 物理意义
这种“穿过势垒”的行为是由于量子力学的非经典性质。我们可以将它理解为,电子以一定的概率穿过了它在经典力学中无法越过的障碍。隧穿效应在很多实际应用中具有重要意义,比如在半导体器件、隧道二极管和扫描隧道显微镜中,它们都利用了电子能够穿越势垒的现象。
总结
- 隧穿效应允许电子在势垒能量高于其自身能量时仍然有概率穿过势垒。
- 电子在势垒内的波函数呈指数衰减,但在势垒另一侧不为零,导致一定的穿透概率。
- 隧穿效应是量子力学的特性,在经典物理中无法解释。