背景:我们分析一个滤波器的频谱特性
假设你有一个信号通过了一个滤波器,滤波器的频率响应并不是理想的矩形(brickwall),而是一个实际滤波器的频谱,比如高斯形状的频率响应。我们现在想要定义这个滤波器的“分辨率”或者“带宽”。
情况1:使用 -3 dB 带宽
- 我们查看滤波器频率响应的最大值,然后找出频谱下降到最大值一半(功率下降到 -3 dB)的两个频率点。
- 这两个频率点之间的距离就是 -3 dB 带宽。
例子:
- 滤波器的频谱在最大值时为 1.0 1.0 1.0,功率下降到 0.5 0.5 0.5 时的两个频率点分别是 f 1 = 100 Hz f_1 = 100 \, \text{Hz} f1=100Hz 和 f 2 = 120 Hz f_2 = 120 \, \text{Hz} f2=120Hz。
- 则 -3 dB 带宽为:
-3 dB 带宽 = f 2 − f 1 = 120 Hz − 100 Hz = 20 Hz \text{-3 dB 带宽} = f_2 - f_1 = 120 \, \text{Hz} - 100 \, \text{Hz} = 20 \, \text{Hz} -3 dB 带宽=f2−f1=120Hz−100Hz=20Hz
这告诉我们,该滤波器的主频谱分量分布在 20 Hz 的频率范围内。
情况2:使用等效噪声带宽(ENBW)
- 等效噪声带宽的定义是:找到一个理想的矩形(brickwall)滤波器,它的输出功率和实际滤波器一样。
- 理想的矩形滤波器的频谱是一个理想的矩形,我们通过比较功率来计算 ENBW。
例子:
- 滤波器的总输出功率(从所有频率积分得到)是 P = 1.0 P = 1.0 P=1.0。
- 一个理想的矩形滤波器,其频率范围是 f ENBW f_{\text{ENBW}} fENBW,如果这个矩形滤波器的总功率也为 P = 1.0 P = 1.0 P=1.0,则矩形的宽度 f ENBW f_{\text{ENBW}} fENBW 就是等效噪声带宽。
- 计算时可能得到:
ENBW = 22 Hz \text{ENBW} = 22 \, \text{Hz} ENBW=22Hz
ENBW 会比 -3 dB 带宽略宽,因为它考虑的是整个频谱的总功率,而不是仅仅关心频谱下降到 -3 dB 的点。
对比:两种带宽定义的不同
定义 | -3 dB 带宽 | 等效噪声带宽(ENBW) |
---|---|---|
用途 | 突出主频谱范围 | 衡量总功率的等效范围 |
计算方式 | 找频谱下降到 -3 dB 的点间隔 | 比较滤波器总输出功率 |
带宽大小 | 通常较窄 | 通常比 -3 dB 带宽略宽 |
应用场景 | 信号处理和主频谱分辨率分析 | 噪声分析和功率估计相关场景 |
总结
如果你要关注信号的主频谱区域,使用 -3 dB 带宽 更合适。如果你关注的是滤波器对信号的总功率影响,ENBW 会是更合理的选择。