-3 dB 带宽和等效噪声带宽(ENBW)的例子

背景:我们分析一个滤波器的频谱特性

假设你有一个信号通过了一个滤波器,滤波器的频率响应并不是理想的矩形(brickwall),而是一个实际滤波器的频谱,比如高斯形状的频率响应。我们现在想要定义这个滤波器的“分辨率”或者“带宽”。


情况1:使用 -3 dB 带宽
  • 我们查看滤波器频率响应的最大值,然后找出频谱下降到最大值一半(功率下降到 -3 dB)的两个频率点。
  • 这两个频率点之间的距离就是 -3 dB 带宽

例子:

  • 滤波器的频谱在最大值时为 1.0 1.0 1.0,功率下降到 0.5 0.5 0.5 时的两个频率点分别是 f 1 = 100   Hz f_1 = 100 \, \text{Hz} f1=100Hz f 2 = 120   Hz f_2 = 120 \, \text{Hz} f2=120Hz
  • 则 -3 dB 带宽为:
    -3 dB 带宽 = f 2 − f 1 = 120   Hz − 100   Hz = 20   Hz \text{-3 dB 带宽} = f_2 - f_1 = 120 \, \text{Hz} - 100 \, \text{Hz} = 20 \, \text{Hz} -3 dB 带宽=f2f1=120Hz100Hz=20Hz

这告诉我们,该滤波器的主频谱分量分布在 20 Hz 的频率范围内。


情况2:使用等效噪声带宽(ENBW)
  • 等效噪声带宽的定义是:找到一个理想的矩形(brickwall)滤波器,它的输出功率和实际滤波器一样。
  • 理想的矩形滤波器的频谱是一个理想的矩形,我们通过比较功率来计算 ENBW。

例子:

  • 滤波器的总输出功率(从所有频率积分得到)是 P = 1.0 P = 1.0 P=1.0
  • 一个理想的矩形滤波器,其频率范围是 f ENBW f_{\text{ENBW}} fENBW,如果这个矩形滤波器的总功率也为 P = 1.0 P = 1.0 P=1.0,则矩形的宽度 f ENBW f_{\text{ENBW}} fENBW 就是等效噪声带宽。
  • 计算时可能得到:
    ENBW = 22   Hz \text{ENBW} = 22 \, \text{Hz} ENBW=22Hz

ENBW 会比 -3 dB 带宽略宽,因为它考虑的是整个频谱的总功率,而不是仅仅关心频谱下降到 -3 dB 的点。


对比:两种带宽定义的不同

定义-3 dB 带宽等效噪声带宽(ENBW)
用途突出主频谱范围衡量总功率的等效范围
计算方式找频谱下降到 -3 dB 的点间隔比较滤波器总输出功率
带宽大小通常较窄通常比 -3 dB 带宽略宽
应用场景信号处理和主频谱分辨率分析噪声分析和功率估计相关场景

总结

如果你要关注信号的主频谱区域,使用 -3 dB 带宽 更合适。如果你关注的是滤波器对信号的总功率影响,ENBW 会是更合理的选择。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值